# An update on the KATRIN experiment

The International Workshop on Baryon and Lepton Number Violation - 2017, Cleveland, OH -

Norman Haußmann haussmann@uni-wuppertal.de

Bergische Universität Wuppertal Germany

Wednesday, 17th May 2017





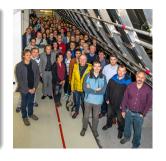
bmb+f - Förderschwerpunkt
Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung



# Outline

- 1 The KATRIN Experiment
  - KATRIN in a nutshell
  - First Light
  - determination of  $m_{\nu}$
  - WGTS
  - DPS
  - CPS
  - MAC-E-filter


- Main Spectrometer background
- Sterile Neutrinos
  - Measurement phases
    - pre KATRIN phase
    - post KATRIN phase
    - FBM
- Outlook
- 4 References

2 / 19

# The KArlsruhe TRItium Neutrino experiment

- international collaboration with  $\approx 130$  members in 6 countries
- located at Karlsruhe Institute of Technology























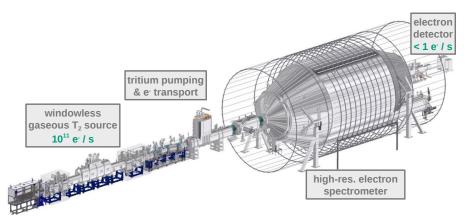








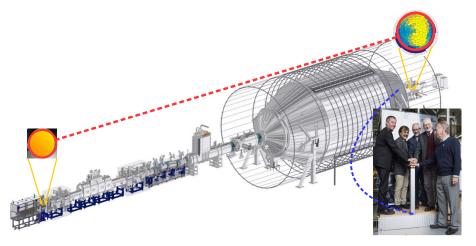








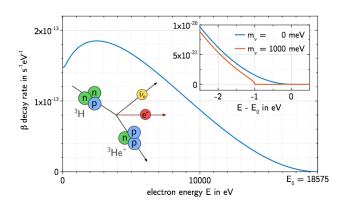

#### KATRIN in a nutshell


- ullet improvement from 2 eV ightarrow 0.2 eV sensitivity
  - requires 100x improved statistics and systematics
  - ▶ 70 m long beamline
  - ▶ high energy resolution: MAC-E-filter
  - high activity and stability of the source



# KATRIN - First Light

technical inauguration - 14th October 2016

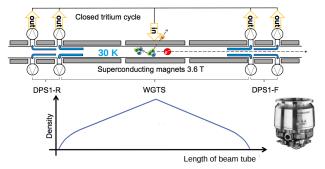

- illuminate rear wall with UV light
- photo-electric electrons are magnetically guided through entire beam line



# The direct determination of $m_{\nu}$

$$\frac{d\Gamma}{dE} = C \times F(Z, E) p(E + m_e) (E_0 - E) \sum_i |U_{ei}|^2 \sqrt{(E_0 - E)^2 - m^2(\nu_i)}$$

Spectral distortion  $m^2(\nu_e) = \sum_i |U_{ei}|^2 m_i^2$ 



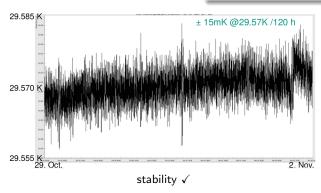

#### The Windowsless Gaseous Tritium Source

- 10 m long beam tube with 90 mm diameter
- 7 solenoids with 3.6 T to 5.6 T
- Gaseous Molecular Tritium
  - ▶ high activity  $\approx$  170 GBq
  - ▶ high isotopic purity  $\epsilon_t > 95 \%$
  - ▶ high stability 0.1 %



September 2015



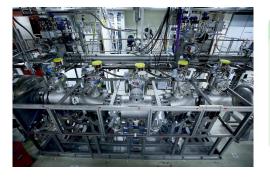

# Requirements on the WGTS cryostat

- tritium beam tube cooled to 30 K
  - homogeneity and stability of 0.1 %
- check of leakage rate primary system and second containment √

# homogeneity (√)

- ullet towards front side <~0.1~%
- ullet towards rear side  $\leq 1 \%$

The inhomogeneity is known!




WGTS beam tube ready for  $T_2$  operation!

# The Differential Pumping Section

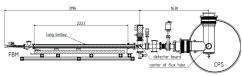


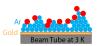
- reduction of tritium flow by  $10^5$ 
  - 4 turbo pumps
  - electrons and ions are guided magnetically through chicane



#### ion removal

- dipole and ring electrodes √
- FT-ICR X


#### First Light results:


- **no** collision of the 191 Tcm<sup>2</sup> e<sup>-</sup> flux with beam tube
- ions can be drifted with the dipole electrodes
- ions can be blocked with the ring electrodes

# The Cryogenic Pumping Section



- reduction of tritium flow by  $10^7$ 
  - cryosorption on the pre-condensed Argon frost layer
  - ▶ tilted beam line
- Forward Beam Monitor attached to CPS
  - monitoring and scanning of the column density

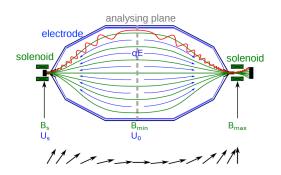




T<sub>2</sub> -cryosorption



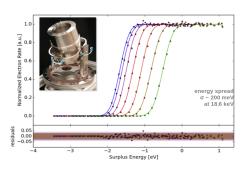
#### The MAC-E-filter

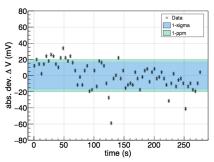



#### Magnetic Adiabatic Collimation and Electrostatic filter

energy resolution

$$\Delta E = \frac{B_{min}}{B_{max}} \cdot E = \frac{3 \cdot 10^{-4} \text{ T}}{6 \text{ T}} \cdot 18600 \text{ eV}$$

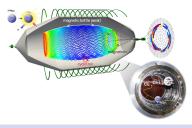

• volume of 1500 m<sup>3</sup> and mass of  $\approx 200 \text{ t}$ 

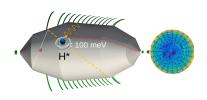







# Main spectrometer: MAC-E-filter characteristics




- sharp transmission for electrons at 18.6 keV
- width limited by e-gun transmission spectrum

- HV-stability on ppm level
- long term stability monitoring with <sup>83m</sup>Kr

# Main spectrometer background



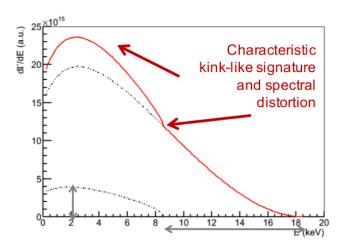


# <sup>219</sup>Rn atoms

- <sup>219</sup>Rn emanates from NEG
- ullet background rate:  $pprox 0.5 \ cps$

#### H\* Rydberg atoms

- desorbed due to <sup>206</sup>Pb recoil ions
- background rate:  $\approx 0.5 \text{ cps}$


#### countermeasure

- cryotraps in front of NEG
  - 3 LN<sub>2</sub> cooled Cu-baffles

#### countermeasure

- reduction H-atom surface coverage
  - extended bake-out phase
  - strong UV illumination source

# Hunting keV sterile neutrinos with KATRIN



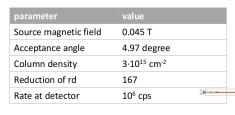
# The measurement phases

- pre KATRIN measurement phase
  - $\,\blacktriangleright\,$  reduced count rate at the detector  $\approx 10^6$  cps
    - ★ low count rate in standard KATRIN operation
    - ★ energy resolution of 2 keV (FWHM)
  - quick measurement to improve current limits
- 2 post KATRIN measurement phase
  - new detector and read-out system  $\approx 10^8$  cps
    - ★ energy resolution of 300 eV (FWHM)
- upgrade of the FBM
  - replace PIN diode with SDD planed for post KATRIN
    - ★ current energy resolution of 2 keV (FWHM)

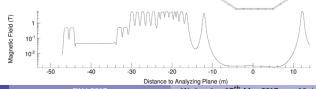







## pre KATRIN Phase

How to decrease count rate?

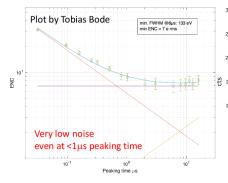

- decrease column density
  - less scattering in the source
- decrease magnetic field in the source
  - reduced acceptance angle

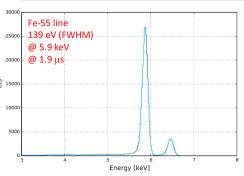
# crucial systematics

- rear wall / detector scattering
- adiabaticity
- pile-up



Plot by Anton Huber

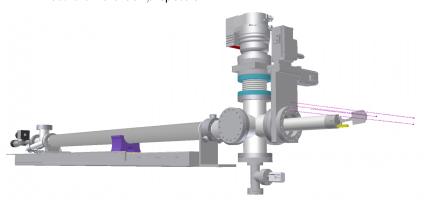




# post KATRIN Phase

- $oldsymbol{0}$  after u mass measurement
- upgraded detector and read-out system
- detailled source model is necessary
  - MC simulations not feasible

# required characteristics

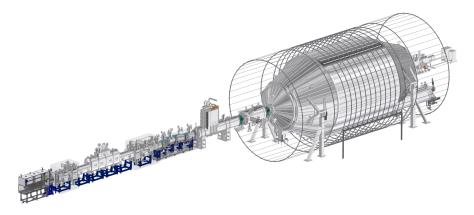
- 1 000 − 10 000 pixel
- ullet thin dead layer  $< 10 \ \text{nm}$
- energy resolution 300 eV (FWHM) at 20 keV





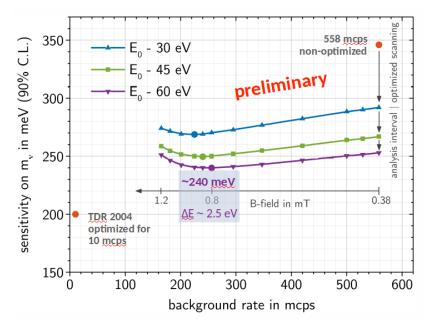

#### Forward Beam Monitor



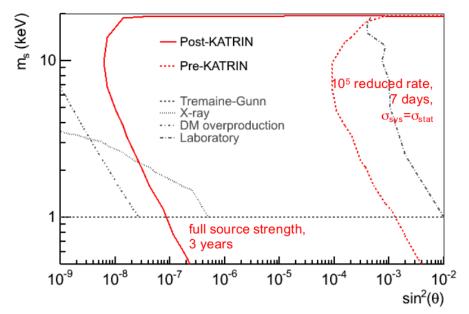

- PIN diodes: monitor the source during KATRIN operation
- replace PIN diode with Silicon Drift Detector
  - small deadlayer
  - ▶ high energy resolution
  - ightharpoonup record differential  $\beta$ -spectrum



#### Outlook


#### Next steps:

- deuterium and Kr in the source
- electrons: energy losses in source and transmission function
- first traces active tritium: commissioning and safety checks
- pre KATRIN sterile neutrino measurement




# Backup slides

# KATRIN sensitivity



# Sterile Neutrino sensitivity



#### References

#### Direct probes of neutrino mass

Kathrin Valerius, Neutrino 2016,

http://neutrino2016.iopconfs.org/IOP/media/uploaded/EVIOP/event\_948/kvalerius\_directnumass\_v4\_web.pdf

# KATRIN Design Report

J. Angrik et. al., 2005, https://www.katrin.kit.edu/publikationen/DesignReport2004-12Jan2005.pdf

#### WINDOWLESS GASEOUS TRITIUM SOURCE - Status and Outlook

A. Jansen, March 2017, 32nd Collaboration Meeting

#### References

# Status of the Differential Pumping Section

M. Hackenjos, March 2017, 32nd Collaboration Meeting

## Status of the Cryogenic Pumping Section

M. Steidl, March 2017, 32nd Collaboration Meeting

#### The mass of the neutrino – truly

K. Helbing, January 2017, PRISMA Colloquium

# Search for keV sterile Neutrinos in Tritium Beta Decay with KATRIN

S. Mertens, 2015

#### Status of keV-scale sterile neutrino search with KATRIN

S. Mertens, March 2017, 32nd Collaboration Meeting