The UV limit of GUTs

Borut Bajc

J. Stefan Institute, Ljubljana, Slovenia

BB, F. Sannino, 1610.09681
Introduction and motivation

Among the most interesting frameworks for addressing BLV are Grand Unified Theories.

GUTs are theories of both lepton (neutrino masses) and baryon number (proton decay).

the two numbers are somehow related

This talk will be about the consistency of some among such theories.
Many examples of grand unification:

- \(SU(5), \ SU(6), \ldots, \ SO(10), \ldots, \ E_6 \)

in many different versions:

- non-supersymmetric, low energy supersymmetric, arbitrary energy supersymmetric

and different assumptions

- renormalizable, extra flavor symmetries

Here I will concentrate on supersymmetric renormalizable \(SO(10) \)
In most SUSY SO(10) matter fields of 1 generation typically live in

\[16 = Q + u^c + e^c + d^c + L + \nu^c \]

\[\begin{aligned} &\quad_{10} \quad_{\bar{5}} \quad_{1} \end{aligned} \]

The (almost) always present Yukawa

\[W_{Yukawa} = 16 \, 10_H \, Y_{10} \, 16 \]

not enough for fitting masses (and no mixing).
Models differ mainly by the Higgs sector and additional Yukawa structure:

- small Higgs representations: $16_H, 45_H \ldots$, non-renormalizable Yukawa

\[
\delta W_{Yukawa} = 16 \left(\frac{10_H}{M} 45_H Y'_{120} + \frac{16_H}{M}^2 Y'_{126} + \ldots \right) 16
\]

- large Higgs representation: $10_H, 126_H, 210_H \ldots$, renormalizable Yukawa

\[
\delta W_{Yukawa} = 16 (126_H Y_{126} + \ldots) 16
\]
My personal (biased) point of view is that models with large representations are more appealing because

- able to predict automatic R-parity conservation at low energies:

\[R = (-1)^{B-L}, \quad (B-L)(\langle 126_H \rangle) = 2 \]

while

\[(B-L)(\langle 16_H \rangle) = 1 \]

- the whole model can be made renormalizable and thus simpler, minimal
Assuming a split susy scenario with vanishing A-terms the model could fit the data except for

- θ_{13} (at the time there was only an upper limit)
- Higgs mass (at the time has not been measured yet)

I believe that both issues can be resolved easily:

- by including θ_{13} in the fit instead of just assuming an upper bound
- by allowing non-zero (and large) A-terms

After all with proper soft susy terms a much more difficult case of minimal SU(5) has been made to work (without neutrinos)
Fans of small representation have a strong objection though:
The minimal large representation supersymmetric renormalizable model has the following chiral superfields

$$3 \times 16 + (10_H + 126_H + \overline{126}_H + 210_H)$$

and thus the 1-loop β function is

$$\beta_1 \equiv 3T(G) - \sum_i T(R_i) = 3 \times 8 - (3 \times 2 + 1 + 35 + 35 + 56) = -109$$

i.e. large and negative and so a Landau pole appears in the SO(10) gauge coupling g
\[\mu \frac{dg}{d\mu} = -\frac{\beta_1}{16\pi^2} g^3 \quad \rightarrow \quad g^2(\mu) = -\frac{8\pi^2}{\beta_1 \log (\Lambda/\mu)} \]

\(\Lambda = \text{Landau pole} \lesssim 10M_{GUT} \quad (g(\Lambda) = \infty) \)

Can we save somehow these theories? they seem UV sick. Various possibilities:

- incorporate this SO(10) theory into a larger gauge group (for example \(E_6\)): does not work, on the contrary, it makes the problem worse \((\beta_1(E_6) = -159)\);

- make gravity with a lower effective \(M_{Planck}\), this also predicted because of large number of degrees of freedom present; but it is a kind of sweeping the problem under the carpet: magic gravity will somehow solve all problems, but we have no control over it;

- try to make sense of the field theory with asymptotic safety.
We got a Landau pole at 1-loop. What about higher loops?

\[\mu \frac{dg}{d\mu} = -\left(\frac{\beta_1}{16\pi^2} g^3 + \frac{\beta_2}{(16\pi^2)^2} g^5 + \ldots \right) \]

This important only if

\[\frac{g^2}{16\pi^2} \gtrsim \mathcal{O}(1) \]

destroying perturbativity.

The only hope is that **non-perturbatively the Landau pole is avoided** and the gauge coupling (and eventually other couplings) flow to a finite (but large, non-perturbative) value.
Hard to work with non-perturbativity.

However if a solution of the Landau pole exists, then the theory in the UV is asymptotically conformal (no running). We lost perturbativity but gained the **conformal** symmetry

This we will use (in connection with **supersymmetry**)
Imagine we have a field theory in $d = 4$

Trace anomaly of stress-energy tensor $T^\mu\nu$:

$$T^\mu\mu = -\frac{a}{16\pi^2} E_4 + \frac{c}{16\pi^2} Weyl^2 + \ldots$$

where

$$Weyl^2 \equiv R^{\alpha\beta\gamma\delta} R_{\alpha\beta\gamma\delta} - 2R^{\alpha\beta} R_{\alpha\beta} + \frac{1}{3} R^2$$

$$E_4 \equiv R^{\alpha\beta\gamma\delta} R_{\alpha\beta\gamma\delta} - 4R^{\alpha\beta} R_{\alpha\beta} + R^2$$

are quadratic diffeomorphism invariants.
Our set-up is a $d = 4$ supersymmetric theory

- free in the IR
- with hypothetical UV interacting fixed point $= \text{asymptotically safe theory}$
If this true in the UV the theory is an interacting CFT

One can prove that:

1. $a_{UV} > a_{IR}$
2. $c_{UV} > 0$
3. $\frac{1}{6} \leq \frac{a_{UV}}{c_{UV}} \leq \frac{1}{2}$
4. no gauge invariant operator with $R < 2/3$
1. is the famous a-theorem (4d version of the 2d c-theorem): in a theory with spontaneously broken conformal symmetry the dilaton is the Nambu-Goldstone boson; calculate dilaton-dilaton scattering:

$$amplitude \propto \frac{\Delta a}{f^4} s^2$$

$$\rightarrow \Delta a \equiv a_{UV} - a_{IR} > 0$$

2. follows from

$$\langle T_{\mu\nu}(x)T_{\alpha\beta}(0) \rangle = c \Pi_{\mu\nu\alpha\beta}(\partial) \frac{1}{x^4}$$

$$\rightarrow c > 0$$
3. is the ”conformal collider bound”, follows from positivity of emitted energy, in any conformal theory

\[\frac{1}{9} \leq \frac{a}{c} \leq \frac{31}{54} \]

in supersymmetry this reduces to

\[\frac{1}{6} \leq \frac{a}{c} \leq \frac{1}{2} \]

4. is due to unitarity: any conformal field theory have

\[D(\mathcal{O}) \geq 1 \]

Since in conformal theories primary operators (no derivatives)

\[R = \frac{2}{3}D \rightarrow R > 2/3 \]
Calculation of central charges

In a generic field theory a and c can be calculated perturbatively. In our case this not useful because fixed point non-perturbative

Fortunately in supersymmetry central charges can be got exactly
\[(R_i, F_i, n_i) \quad \ldots \quad (R - \text{charge}, \text{global charge}, \#) \text{ of chiral field } i \]

\[|G| \quad \ldots \quad \text{dimension of gauge group } G = \# \text{ of gauge fields} \]

\[
a = 2|G| + \sum_i n_i a_1(R_i) \quad , \quad a_1(R) = 3(R - 1)^3 - (R - 1)
\]

\[
c = 4|G| + \sum_i n_i c_1(R_i) \quad , \quad c_1(R) = 9(R - 1)^3 - 5(R - 1)
\]
This exact relations are due to the fact that \(T_{\mu\nu} \) and \(j^\mu_R \) are different components of the same supermultiplet

\[\rightarrow \text{relations between } T^\mu_\mu \text{ and } \partial^\mu j^\mu_R : \]

\[
T^\mu_\mu = -a \; E_4 + c \; \text{Weyl}^2 + \ldots \\
\partial^\mu j^\mu_R = [\text{Tr} \; U(1)_R] \; R_{\alpha\beta\gamma\delta} \tilde{R}^{\alpha\beta\gamma\delta} + [\text{Tr} \; U(1)_R^3] \; F_{R\mu\nu} \tilde{F}^{\mu\nu}_R \\
\propto n_i (R_i - 1) \\
\propto n_i (R_i - 1)^3
\]

\(U(1)_R \) symmetry unavoidable in supersymmetric fixed points
(conformal theories): \(R \) charge part of the superconformal algebra
Remember that R-charges and dimensions of primary (no derivatives) fields are related:

\[R(\text{chiral superfield}) = \frac{2}{3} D(\text{chiral superfield}) \]

This means that for a free theory \((D(\phi_{\text{free}}) = 1) \)

\[R(\phi_{\text{free}}) = \frac{2}{3} \]

Gaugino has by definition always

\[R(\text{gaugino}) = 1 \]
If we know the R-charges, we know the central charges a, b, c

How do we get the R-charges R_i?

In SCFT the β functions must vanish.

- NSVZ β function is proportional to
 \[
 T(G) + \sum_i T(r_i)(R_i - 1) = 0
 \]
 T...Dynkin index

- β function for superpotential coupling λ_a of
 \[
 W = \lambda_a \prod_i \phi_i^{q_{ia}}
 \]
 is proportional to
 \[
 \sum_i q_{ia} R_i - 2 = 0
 \]
Three possibilities:

1. # of constraints above bigger than number of chiral fields
 → no SCFT

2. # of constraints above equal to number of chiral fields
 → the solution to above equations unique and represents a possible candidate for CFT; to check consistency with inequalities mentioned above

3. # of constraints above smaller than number of chiral fields
 → one uses the above equations to express some R-charges with the others; then applies the a-maximization to calculate the remaining R-charges:
\[\frac{\partial a}{\partial R_i} = 0 \]

This gives same number of equations than unknowns \(R_i \).
Equations are quadratic so there can be several real solutions. One should choose the one with

\[\frac{\partial^2 a}{\partial R_i \partial R_j} \quad \text{all negative eigenvalues} \]
SO(10) with \(W=0 \)

Easy to analyze, to get a flavor of the procedure

\[
a = 2|G| + \sum_{i} |r_i|a_1(R_i) + \lambda_G \left(T(G) + \sum_{i} T(r_i)(R_i - 1) \right)_{NSVZ}
\]

- \(|G|\) ... dimension of gauge group (= 45 in SO(10))
- \(|r_i|\) ... dimension of representation \(r_i\)
- \(i\) ... runs over chiral superfields
- \(\lambda_G\) ... Lagrange multiplier for vanishing of NSVZ \(\beta\)-function
Maximizing a we get

$$\frac{\partial a}{\partial R_i} = |r_i| (9(R_i - 1)^2 - 1) + \lambda_G T(r_i) = 0$$

$$\rightarrow R_i(\lambda_G) = 1 - \frac{\epsilon_i}{3} \sqrt{1 - \frac{T(r_i)}{|r_i|} \lambda_G} \quad \epsilon_i = \pm 1$$

One can imagine that λ_G is changing along the flow (a function of the gauge coupling g^2):

$$\begin{align*}
\lambda_G &= 0 \\
\mu &= 0
\end{align*} \quad \begin{align*}
\lambda_G &= \lambda^*_G \\
\mu &= \infty
\end{align*}$$
• In the IR $\lambda_G = 0$, all $\epsilon_i = +1$ and so $R_i = 2/3$ (free!)

• For small λ_G the theory is perturbative and one finds the 1-loop relation

$$\lambda_G = \frac{g^2}{2\pi^2} + O(g^4)$$

• one can repeat the calculation up to 3-loops getting agreement for the scheme independent part of the perturbative calculation of the anomalous dimensions

• if there is a UV CFT, it happens at some λ_G^* such that NSVZ vanishes:

$$T(G) + \sum_i T(r_i) (R_i(\lambda_G^*) - 1) = 0$$
This last step is possible only if \(\sqrt{\text{positive number}} : \)

\[
1 - \frac{T(r_i)}{|r_i|} \lambda_G^* \geq 0
\]

i.e. if

\[
\lambda_G^* \leq \lambda_G^{max} \equiv \min_i \left(\frac{|r_i|}{T(r_i)} \right)
\]

The minimal SO(10) model has \(10 + 2 \times 126 + 210 + 3 \times 16 \)

\[
\lambda_G^{max} \equiv \min_i \left(\frac{|r_i|}{T(r_i)} \right) = \frac{|126|}{T(126)} = \frac{126}{35}
\]
On the other side a possible fixed point with all $\epsilon_i = +1$ will not satisfy the $\Delta a > 0$ theorem.

\[R_{\epsilon=+1} \leq 1 \]

But for these values $a_1(R_{\epsilon=+1}) < a_1(2/3)$ and so $a_{UV} < a_{IR}$.

At least one chiral field must have $R_i > 5/3 \rightarrow \epsilon_i = -1$
The only possibility is

1. with λ_G running from 0 reach λ_G^{max} without satisfying NSVZ with all $\epsilon_i = +1$ at any point $0 \leq \lambda_G \leq \lambda_G^{max}$

2. at $\lambda_G = \lambda_G^{max}$ we can change sign of ϵ_{126} and/or $\epsilon_{\overline{126}}$

3. returning back with λ_G towards 0 finding a point λ_G^{*} where NSVZ vanishes with these new ϵ’s.
In our case with all $\epsilon_i = +1$ we get

$$\beta_{NSVZ}(0) < 0$$

$$\beta_{NSVZ}(\lambda_G^{max}) > 0$$

and thus a zero is somewhere in between but with $a_{UV} < a_{IR}$.
→ no consistent UV fixed points in minimal SO(10) with $W = 0$
SO(10) with $W \neq 0$

We tried various trilinear terms in the superpotential.

The only solution we found was with the superpotential

$$W = y_1 210^3 + y_2 210 126 \overline{126} + y_3 210 126 10 + y_4 210 \overline{126} 10$$

$$+ \sum_{a,b=2,3} 16_a 16_b \ (y_{5,ab} 10 + y_{6,ab} \overline{126})$$

i.e. all the most general trilinear couplings except that 16_1 never appearing in W.

The constraints (all β-functions vanishing) fix

$$R(16_1) = \frac{113}{6}$$

and all other $R = 2/3$.
Comments:

- the solution found describes one massless generation
- there are more Lagrange multipliers than equations of motion: our solution is a manifold of fixed points
- if we consider SO(10) with different field content (not the minimal) we were able to find some very exotic solutions; for example a theory with

 274909 generations of 10 and
 5161 generations of 126

 a UV fixed point can be found with all constraints satisfied!
• if some gauge invariant operators have $R < 2/3$ the correct interpretation is that these composites become free (with $R = 2/3$) but the expressions for the central charges must be changed in a known way. We tried to look in some of these cases but with no success (no consistent UV fixed point found)

• we avoided such cases when $R_i < 0$; although in principle such cases can be studied, the calculation is complicated (finding out all the gauge invariant operators from the chiral ring)
Conclusion

• Problem of Landau pole because of supersymmetry (non-supersymmetric theories usually do not have problems with Landau poles before the Planck scale)

• But supersymmetry can help analyzing the non-perturbative problem: inequalities on central charges a, b, c used

• Unable to find a realistic candidate for a UV fixed point in minimal supersymmetric SO(10)

• Solution possible for one generation of matter fields decoupled from the superpotential

• (Difficult) analysis with some $R_i < 0$ still to be done

• Other theories could be analyzed similarly: SU(5) with missing partner, minimal E_6, etc