Searches for new Higgs bosons at CMS

corrinne mills
on behalf of the CMS collaboration
University of Illinois at Chicago and Fermilab

Workshop on Baryon and Lepton Number Violation
May 16, 2017
Introduction

- Discovery and first characterization of a Higgs boson was defining achievement of CMS and ATLAS in Run 1 of the LHC

- Additional Higgs bosons well-motivated and generically present in extensions of the Standard Model

 → Doublets and/or singlets, including in supersymmetry

 → Triplets as in left-right symmetric models (neutrino mass)

 → Connection between additional scalars and electroweak baryogenesis

- Extensive LHC searches, plus ever-improving measurements of the observed Higgs boson strongly constrain additional Higgs bosons

- Broad search program at CMS adapts accordingly

 → Cascades of multiple new Higgs bosons

 → Production by and decay to fermions

 → Invisible decays

 → Triplet models, including doubly-charged Higgs boson
Two-Higgs-doublet models
Two-Higgs-Doublet Model

- 2HDM is a workhorse of BSM Higgs physics
 - Second SU(2) doublet compared to the SM
 - Five physical particles: h, H, H^\pm, A
 - Compatible with electroweak baryogenesis
 - Can modify phase transition, include additional sources of CP violation
 - “Type 2” similar to Higgs sector of Supersymmetry

- Parameterized by $\tan \beta = v_2/v_1$ ratio of VEVs, and α = angle of rotation that diagonalizes the mass matrix of CP-even states

- h and H “share” couplings to SM fermions and vector bosons

<table>
<thead>
<tr>
<th></th>
<th>type 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W, Z</td>
<td>up-type q</td>
<td>$\sin (\beta-\alpha)$</td>
<td>$\cos \alpha / \sin \beta$</td>
<td>$\cos \alpha / \sin \beta$</td>
<td>$- \sin \alpha / \cos \beta$</td>
</tr>
<tr>
<td>h</td>
<td>dn-type q</td>
<td>$\cos \alpha / \sin \beta$</td>
<td>$\cos \alpha / \sin \beta$</td>
<td>$\sin \alpha / \sin \beta$</td>
<td>$\sin \alpha / \cos \beta$</td>
</tr>
<tr>
<td>H</td>
<td>up-type q</td>
<td>$\sin \alpha / \sin \beta$</td>
<td>$\sin \alpha / \sin \beta$</td>
<td>$\sin \alpha / \sin \beta$</td>
<td>$\sin \alpha / \cos \beta$</td>
</tr>
</tbody>
</table>
Pragmatist’s interpretation

2HDM strongly constrained by direct searches and indirectly by measurements of observed Higgs boson

→ Very good agreement in vector boson couplings
→ Suggests “alignment”: $H \rightarrow VV$ and $H^{\pm} \rightarrow WZ$ suppressed
→ and/or “decoupling”: additional particles very massive

<table>
<thead>
<tr>
<th></th>
<th>h</th>
<th>H</th>
<th>H^{\pm}</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>charge</td>
<td>neutral</td>
<td>neutral</td>
<td>charged</td>
<td>neutral</td>
</tr>
<tr>
<td>CP</td>
<td>even</td>
<td>even</td>
<td>even</td>
<td>odd</td>
</tr>
<tr>
<td>couplings</td>
<td>SM-like</td>
<td>tt, (hh)</td>
<td>$\tau\nu$, tb, bc</td>
<td>tt, bb, $\tau\tau$, (Zh)</td>
</tr>
</tbody>
</table>

("pseudoscalar")
A \rightarrow Zh

- Classic search for 2HDM
- Use $h \rightarrow bb$, largest branching ratio for light SM-like h
- Search for $llbb$ resonance

$A \rightarrow Zh \rightarrow \ell\ell b\bar{b}$ ($\ell = e, \mu$) $L = 19.7$ fb$^{-1}$ (8 TeV)

CMS Low mass

95% CL limits
- Observed
- Excluded region
- Expected
- Expected ± 1σ
- Expected ± 2σ

Type-II 2HDM $m_A = 300$ GeV

alignment limit

$\tan\beta$
h, H, A → ττ

- Any of h, H, A (= ϕ) can decay to τ pair
- Hadronic and leptonic decays in analysis

→ All-hadronic (τ_hτ_h) most sensitive for
 m_ϕ > 200, μτ_h for m_ϕ < 200 GeV

\[m_T^{\text{tot}} = \sqrt{m_T(E_{T}^{\text{miss}}, \tau_1^{\text{vis}})^2 + m_T(E_{T}^{\text{miss}}, \tau_2^{\text{vis}})^2 + m_T(\tau_1^{\text{vis}}, \tau_2^{\text{vis}})^2} \]

HIG-16-037-pas
General 2-scalar search

- EW baryogenesis: look for $A \rightarrow ZH$, $H \rightarrow ZA$, not just $A \rightarrow Zh$
 - All of H, A, and h decay to $b\bar{b}$ or $\tau\tau$
 - Release mass constraint on $m(b\bar{b})$ or $m(\tau\tau)$

CMS, 8 TeV
1603.02991
~1.5σ excess
General 2-scalar search

for $\tan(\beta) = 1.5$, $\cos(\beta - \alpha) = 0.01$,
scan mass:

for a given mass,
scan parameter space:
H/A \rightarrow invisible

- “Invisible” means missing transverse momentum
 \rightarrow Identify as Higgs production via production mode

- Designed for $h[125]$, but sensitive to a pseudoscalar and/or heavy Higgs boson: discriminating variables sensitive to production mechanism but not mass of particle produced
Run 2: Raised trigger thresholds (pileup) limit 13 TeV analysis
 → example: VBF-channel MET threshold raised 90 → 200 GeV

Leading systematics theoretical: BG extrapolation from control regions

It will take some time for Run 2 to catch up

VBF ("qqH") channel most sensitive

BR (H → invis.) < 0.24 at 95% CL (0.23 expected)
Charged Higgs to $\tau\nu$

- Decay to fermions preferred in alignment limit
- Produce via tHb coupling if $m_{H^+} > M_t$
- In top-quark decay if $m_{H^+} < M_t$
- All-hadronic: $\tau_h + E_T^{miss} + 3$ jets
 - $\tau_h + E_T^{miss}$ trigger
 - Discriminant: $\tau_h + E_T^{miss}$ transverse mass (m_τ)
 - Key background τ from mis-ID at high transverse mass
Charged Higgs to $\tau\nu$

- Heavy H^+: limits out to $m_{H^+} = 3$ TeV ($\sigma \times \text{BR} < 3$ fb @ 95% CL)
- Challenging interpretation for light H^+: constraints from $b \rightarrow s\gamma$ and Higgs mass in SUSY interp.
Leptonic decay of other top quark
→ $e/\mu + E_T^{\text{miss}} + 4$ jets (2 or more b-tagged)
→ Background almost all $t\bar{t}$
 - Signal has one more b-jet (3 total)

Kinematic fitter assigns jets to quarks
→ No W-mass constraint on hadronic side
→ top-specific jet energy corrections
beyond the 2HDM-scape
h decay to light singlet

- Light (pseudo)scalar appears in many models: nMSSM, 2HDM+S, technically possible in 2HDM alone
- Decays to fermions (μμ, ττ, bb) have challenging backgrounds
- For \(m_a < 2m_h \), workaround: look for \(h[125] \rightarrow aa \)

Stats-limited, much to be learned in Run 2 and beyond

1701.02032 [hep-ex]

\[m_a \ (GeV) \]
Light scalar decay to muons

- $h \rightarrow 2a \rightarrow 4\mu$ motivated by nMSSM; 13 TeV update of result in prev. slide

 \rightarrow Require consistent invariant mass for the muon pairs but no constraint on $m_{4\mu}$

 \rightarrow Scan dimuon mass $0.25 < m_{2\mu} < 8.5$ GeV and four-μ mass $86 < m_{4\mu} < 150$ GeV

- One candidate event at $(m_1, m_2) = (0.40, 0.56)$ GeV
- $0.74 -0.35 +0.46$ background events expected (dominant background is b-bbar)
Light scalar decay to muons

- b-associated production, new 8 TeV analysis
 - 2 muons, one may be soft ($p_T > 5$ GeV), one b-jet (second may be soft)
 - Competitive with $a \rightarrow \tau \tau$ even if lower BR
Higgs triplet models

• SU(2) triplet rather than doublet or singlet
 → Need UV completion, issues w/custodial symmetry

• Appears in Left-Right symmetric models
 → Higgs sector may be kinematically out of reach in proper L-R symmetric model (1612.09146)

• Also in “type II seesaw models” for generating neutrino masses…

• Extra scalar content / VEV can affect the electroweak phase transition (see 1108.4416)

• Distinctive particle content:

 \[
 H \quad H^\pm \quad H^{\pm\pm}
 \]
Doubly-charged H @CMS

- Analysis using in same-charge leptons, 3- and 4-lepton events
- Also sensitive to $H^{++} \rightarrow W^+W^+$, but not explicitly targeted
 - Semi-leptonic searches for heavy $H \rightarrow WW \rightarrow l\nu jj$ also in principle sensitive

same-charge lepton spectra:
H⁺ via vector-boson fusion

- 3 charged leptons \rightarrow dominant WZ background (QCD and EWK)
- Interpretation in triplet model
 \rightarrow alignment limit \rightarrow no 2HDM
 \rightarrow $s_H^2 =$ fraction of W boson mass squared generated by triplet vev

$$m_{T(WZ)} = \sqrt{(E_T(W) + E_T(Z))^2 - (p_T(W) + p_T(Z))^2}$$

1705.02942
Summary

- Strong motivations to search for extended Higgs sector
 - Cover all decay and production modes
 - 2HDM constraints suggest focus on fermions
 - Doesn’t have to look like the 2HDM
 - Singlets and triplets may also have a role

- Will be a rich program for the life of the LHC – many measurements just getting interesting
 - Detailed Run 1 analysis mostly complete
 - Many Run 2 analyses in place
 - 50x the data yet to come
backup
H/A → ttbar

- Cannot be interpreted as a heavy Higgs search

Background:
- g \rightarrow t \bar{t}

Signal:
- g \rightarrow H, A \rightarrow t \bar{t}

Pseudoscalar

<table>
<thead>
<tr>
<th>Events / 10 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
</tr>
</tbody>
</table>

Scalar

<table>
<thead>
<tr>
<th>Events / 10 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

ATLAS Simulation Preliminary

\(\mathcal{L} = 8 \text{ TeV}, \int \mathcal{L} dt = 20.3 \text{ fb}^{-1} \)

- Before det. sim. and event sel.
- \(m_A = 500 \text{ GeV}, \tan \beta = 0.70 \)

\(m_H, m_A \) [GeV]
Just starting to dip into relevant parameter space

- Exclude $\tan\beta < 0.85$ for $m_A = 500$ GeV
- Exclude $\tan\beta < 0.45$ for $m_H = 500$ GeV

$m_A = 750$ GeV
from ATLAS-CONF-2016-073
Indirect Constraints

- Implication of “shared” couplings: observed Higgs boson must be one of h or H

- Compatibility with SM constrains parameters
 \[\text{The better the measurement, the stronger the constraint for the corresponding channel} \]

- “alignment” = \(\cos(\beta - \alpha) = 0 \) and h is SM-like

- Many such studies covering the parameter space,….
Run 1 is just the beginning

H → WW, the most precise single-channel measurement*, total uncertainty ~20%

Rare but important ZH, ttH production modes still to be established

* Just recently edged out by Run 2 preliminary measurement

H → bb has highest branching ratio, still not observed
The CMS Detector

CMS DETECTOR
- Total weight: 14,000 tonnes
- Overall diameter: 15.0 m
- Overall length: 28.7 m
- Magnetic field: 3.8 T

STEEL RETURN YOKE
- 12,500 tonnes

SILICON TRACKERS
- Pixel (100x150 μm): ~16 m² ~66M channels
- Microstrips (80x180 μm): ~200 m² ~9.6M channels

SUPERCONDUCTING SOLENOID
- Niobium titanium coil carrying ~18,000 A

MUON CHAMBERS
- Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
- Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

PRESHOWER
- Silicon strips: ~16 m² ~137,000 channels

FORWARD CALORIMETER
- Steel + Quartz fibres: ~2,000 Channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
- ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
- Brass + Plastic scintillator: ~7,000 channels

May 16, 2017