Searches for long-lived particles at CMS

A. Hart for the CMS collaboration

The Ohio State University

May 16, 2017
Why long-lived particles (LLP)?

- Dozens of searches over past 6 years have failed to find evidence of BSM physics at the LHC.
- More important than ever to explore ways new physics could have escaped the attention of all these searches.

- LLPs is one such way.
- Most searches assume promptly decaying new particles.

Andrew Hart (The Ohio State University)
CMS already has a rich programme of LLP searches. Several searches place limits on models with baryon/lepton number violation, typically as R-parity violation (RPV):

- very small RPV couplings is a well-motivated way of making the LSP long-lived in SUSY models

CMS long-lived particle searches, lifetime exclusions at 95% CL
Types of LLP searches – direct

- observe LLP directly
- better for **long lifetimes**
- good for **charged LLPs**

Diagram:
- Neutral, charged, any charge
- Direct Searches
- Disappeared conversion
- Displaced photon
- Displaced jet
- Displaced dilepton
- Displaced lepton
- HSCP

Legend:
- BSM
- Lepton
- Quark
- Photon
- Anything

Not pictured:
- Stopped HSCP
Types of LLP searches – indirect

- observe LLP decay products
 - better for **short lifetimes**
 - good for **neutral LLPs**

Indirect Searches

- displaced vertex
- displaced jet
- displaced photon
- displaced dilepton
- disappearing track
- HSCP

Not pictured:

- BSM
- lepton
- quark
- photon
- anything

Andrew Hart (The Ohio State University)
Searches for long-lived particles
May 16, 2017
Heavy stable charged particle (HSCP) search

- neutral
- charged
- any charge

displaced vertex

HSCP

disappearing track

displaced conversion

BSM
lepton
quark
photon
anything

displaced photon

displaced jet

displaced dilepton

displaced lepton

Not pictured:
Stopped HSCP
Most mature LLP search at CMS:

- results at 7, 8, and 13 TeV

Two main discriminating variables:

- \(I_h \) (a.k.a. \(dE/dx \)): ionization energy loss in tracker
- \(\beta^{-1} \): time of flight (TOF) to muon chambers

Two channels maximize sensitivity to strongly-interacting HSCPs that may become neutral via interactions in the tracker:

- tracker-only
- tracker + TOF

Andrew Hart (The Ohio State University) Searches for long-lived particles May 16, 2017 7 / 19
No excess at high mass in either channel.

Limits placed on wide range of models:
- cross section limits down to $1\sim10\ fb$
- mass limits up to 1.8 TeV

<table>
<thead>
<tr>
<th>Selection cuts</th>
<th>Numbers of events 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T (GeV)</td>
<td>I_{as}</td>
</tr>
<tr>
<td>Trk-only</td>
<td>> 65</td>
</tr>
<tr>
<td></td>
<td>> 100</td>
</tr>
<tr>
<td></td>
<td>> 200</td>
</tr>
<tr>
<td></td>
<td>> 300</td>
</tr>
<tr>
<td></td>
<td>> 400</td>
</tr>
<tr>
<td>Trk+TOF</td>
<td>> 65</td>
</tr>
<tr>
<td></td>
<td>> 100</td>
</tr>
<tr>
<td></td>
<td>> 200</td>
</tr>
<tr>
<td></td>
<td>> 300</td>
</tr>
<tr>
<td></td>
<td>> 400</td>
</tr>
</tbody>
</table>
Stopped particles

- neutral
- charged
- any charge

Not pictured: Stopped HSCP
Stopped particles

- Update of mature search done at 7 TeV and 8 TeV.
- Out-of-time events selected with a high-p_T jet.
- Vetoes applied to reject dominant sources of out-of-time calo. activity:
 - calo. noise
 - bremsstrahlung from beam halo muons
 - bramsstrahlung from cosmic muons
Limits placed up to $\tau \gtrsim 11$ days

- Observed numbers of events consistent with expected backgrounds.
- Limits placed on long-lived gluinos and stops:
 - mass limits up to 1.4 TeV (740 GeV) for long-lived gluinos (stops)
 - limits placed over 13 decades of τ

<table>
<thead>
<tr>
<th>Period</th>
<th>Livetime (hrs)</th>
<th>Noise</th>
<th>Cosmics</th>
<th>Halo</th>
<th>Total</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 control</td>
<td>-</td>
<td>$0.3^{+2.4}_{-0.3}$</td>
<td>1.7 ± 0.6</td>
<td>0</td>
<td>$4.1^{+3.0}_{-1.0}$ (the median is 6.2)</td>
<td>2</td>
</tr>
<tr>
<td>2015</td>
<td>135</td>
<td>$0.4^{+2.9}_{-0.4}$</td>
<td>2.6 ± 0.9</td>
<td>1.1 ± 0.1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>2016 control</td>
<td>-</td>
<td>$0^{+2.2}_{-0}$</td>
<td>2.5 ± 0.9</td>
<td>0</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2016</td>
<td>586</td>
<td>$0^{+9.8}_{-0}$</td>
<td>8.8 ± 3.1</td>
<td>2.6 ± 0.2</td>
<td>$11.4^{+10.3}_{-3.1}$ (the median is 17.4)</td>
<td>13</td>
</tr>
</tbody>
</table>
Displaced $e\mu$ search

- Neutral
- Charged
- Any charge

- Displaced vertex
- HSCP
- Disappearing track
- Displaced photon
- Displaced jet
- Displaced dilepton
- Displaced lepton

BSM
Lepton
Quark
Photon
Anything

Andrew Hart (The Ohio State University)

May 16, 2017
Displaced $e\mu$ search

- Update of 8 TeV search.
- Benchmark model of RPV $\tilde{t} \rightarrow b l^\pm$ pair production.
- d_0 of electron and muon used as discriminating variables.
- Events selected with one oppositely-charged $e\mu$ pair.
Limits placed over 4 decades in $c\tau$

- Three mutually exclusive search regions: $200 \mu m < d_0 < 10 \text{ cm}$.
- Observation consistent with expected background in each region.
- Sensitivity limited by:
 - prompt backgrounds and $d_0 > 200 \mu m$ criterion at small $c\tau$
 - lepton reco. eff. at large $c\tau$

Event Source	Search Region I	Search Region II	Search Region III
non-HF sum | $(203 \pm 26) \times 10^{-3}$ | $(410 \pm 170) \times 10^{-5}$ | $(82 \pm 71) \times 10^{-5}$
data-driven HF | < 3.0 | < 0.50 | < 0.019
total background | < 3.2 | < 0.50 | < 0.020
observation | 1 | 0 | 0

$pp \rightarrow t_1 \bar{t}_1'$ ($M_{t_1} = 700 \text{ GeV}$)

- $c\tau = 0.1 \text{ cm}$: 3.8 ± 0.2, 0.94 ± 0.06, 0.16 ± 0.02
- $c\tau = 1 \text{ cm}$: 5.2 ± 0.4, 4.1 ± 0.3, 7.0 ± 0.3
- $c\tau = 10 \text{ cm}$: 0.8 ± 0.1, 1.0 ± 0.1, 5.8 ± 0.2
- $c\tau = 100 \text{ cm}$: 0.009 ± 0.005, 0.03 ± 0.01, 0.27 ± 0.03
Displaced jet search

CMS-EXO-16-003

Andrew Hart (The Ohio State University)

Searches for long-lived particles

May 16, 2017
Search for dijets sharing a common, displaced vertex.

Generated a lot of interest from the pheno. community:
 - able to exclude huge swaths of parameter space for several models

Displaced jet-based tagging strategy developed:
 - sensitive now to single displaced jets
 - able to place limits on RPV $\tilde{t} \rightarrow b l^\pm$ model from displaced $e\mu$ search
Jet tagging variables

- vertex α: fraction of jet’s track p_T associated to vertex
 - cut on highest α vertex
- track IP^{2D}_{sig}: transverse impact parameter of track wrt. PV divided by its error
 - cut on median IP^{2D}_{sig} for jet
- track Θ^{2D}: angle between track p_T and vector from PV to track’s innermost hit
 - cut on median Θ^{2D} for jet
Lot of parameter space excluded

- Expected backgrounds are very small:
 - observation is consistent
- Limits placed on multiple models as a function of LLP mass and lifetime.

<table>
<thead>
<tr>
<th>N_{tags}</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.09 ± 0.16</td>
<td>1</td>
</tr>
<tr>
<td>≥ 3</td>
<td>$(4.9 \pm 1.0) \times 10^{-4}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusion

- Many more results with current 38.5 fb\(^{-1}\) 13 TeV dataset in pipeline.
- The 2017 run will offer even more interesting possibilities for some analyses:
 - CMS now has an upgraded pixel detector with a new 4th barrel layer and 3rd endcap disk on each side.

<table>
<thead>
<tr>
<th>final state</th>
<th>13 TeV result</th>
</tr>
</thead>
<tbody>
<tr>
<td>displaced ee/(\mu\mu) pairs</td>
<td></td>
</tr>
<tr>
<td>displaced (\mu\mu) pairs in muon sys.</td>
<td></td>
</tr>
<tr>
<td>displaced (e\mu) pairs</td>
<td>CMS-EXO-16-022</td>
</tr>
<tr>
<td>displaced (\mu\mu) pairs (dark photons)</td>
<td>CMS-HIG-16-035</td>
</tr>
<tr>
<td>displaced (\gamma) using ECAL timing</td>
<td></td>
</tr>
<tr>
<td>displaced (\gamma) using conversions</td>
<td></td>
</tr>
<tr>
<td>displaced vertices</td>
<td></td>
</tr>
<tr>
<td>displaced jets</td>
<td>CMS-EXO-16-003</td>
</tr>
<tr>
<td>disappearing tracks</td>
<td></td>
</tr>
<tr>
<td>short, highly ionizing disapp. trks.</td>
<td></td>
</tr>
<tr>
<td>kinked tracks</td>
<td></td>
</tr>
<tr>
<td>fractionally charged particles</td>
<td></td>
</tr>
<tr>
<td>stopped particles</td>
<td>CMS-EXO-16-036 (2016)</td>
</tr>
<tr>
<td>delayed muons</td>
<td>CMS-EXO-16-004</td>
</tr>
</tbody>
</table>

- Many well-motivated LLP topologies have yet to be explored.
- Big discoveries could be lurking in the data, just waiting to be found!