Superfluid Dark Matter

Lasha Berezhiani

Department of Physics, Princeton University

May 16, 2017
Introduction

ΛCDM works remarkably well on large scales.
Introduction

ΛCDM works remarkably well on large scales.

It faces some challenges at galactic scales.
MOND:
Milgrom ’83

\[
a = \begin{cases}
 a_N & a_N \gg a_0 \\
 \sqrt{a_N a_0} & a_N \ll a_0
\end{cases}
\]

\[a_0 \sim H_0\]
MOND: Milgrom '83

\[a = \begin{cases}
 a_N & a_N \gg a_0 \\
 \frac{a_N}{\sqrt{a_N a_0}} & a_N \ll a_0
\end{cases} \]

\[a_0 \sim H_0 \]

\[M_b = \frac{v_c^4}{G_N a_0} \]
MOND:

Milgrom '83

\[a = \begin{cases}
 a_N & a_N \gg a_0 \\
 \sqrt{a_N a_0} & a_N \ll a_0
\end{cases} \]

\[a_0 \sim H_0 \]

\[M_b = \frac{v_c^4}{G_N a_0} \]

MOND fails on cosmological scales.
Unified Framework

Unification can be achieved through superfluidity.

\[L_{MOND} = -2M_\text{pl}^3a_0 \left[\left(\vec{\nabla} \phi \right)^2 \right]^{3/2} - \phi \rho \]

\[L_{\text{superfluid}} = P(X) \]

with \(X \equiv \mu + \dot{\phi} - \left(\vec{\nabla} \phi \right)^2/2m \). The pressure \(P \) depends on the properties of the superfluid.
Unified Framework
LB, Justin Khoury ’15

Unification can be achieved through superfluidity.

\[\text{MOND} = -2 \frac{M_{\text{pl}}^2}{a_0} \left[\left(\vec{\nabla} \phi \right)^2 \right]^{3/2} - \phi \rho \]

\[\text{vs} \]

\[L_{\text{superfluid}} = P(X) \text{ with } X \equiv \mu + \dot{\phi} - \left(\vec{\nabla} \phi \right)^2 \frac{m}{2} \]

\[P \text{ depends on the properties of the superfluid.} \]
Unified Framework

LB, Justin Khoury ’15

Unification can be achieved through superfluidity.

\[\mathcal{L}_{\text{MOND}} = -\frac{2M_{\text{pl}}^2}{3a_0} \left[(\vec{\nabla} \varphi)^2 \right]^{3/2} - \varphi \rho_b \]
Unified Framework

LB, Justin Khoury ’15

Unification can be achieved through superfluidity.

\[\mathcal{L}_{\text{MOND}} = -\frac{2M_{\text{pl}}^2}{3a_0} \left[(\vec{\nabla}\varphi)^2 \right]^{3/2} - \varphi \rho_b \]

vs

\[\mathcal{L}_{\text{superfluid}} = P(X) \quad \text{with} \quad X \equiv \mu + \dot{\varphi} - \frac{(\vec{\nabla}\varphi)^2}{2m} \]

\(P \) depends on the properties of the superfluid.
Bose-Einstein Condensate

Condensation takes place when

\[\lambda_{dB} = \frac{1}{\sqrt{mT}} > \ell \]

At this point the particles become indistinguishable and the classical statistics breaks down.

The critical temperature for this phase transition is estimated to be

\[T_c = \frac{n^2}{3m} \]
Bose-Einstein Condensate

Condensation takes place when

$$\lambda_{dB} = \frac{1}{\sqrt{mT}} > \ell$$

At this point the particles become indistinguishable and the classical statistics breaks down.

The critical temperature for this phase transition is estimated to be

$$T_c = \frac{n^{2/3}}{m}$$
Bose-Einstein Condensate

At $T < T_c$

$$\frac{N_{k=0}}{N_{\text{tot}}} = 1 - \left(\frac{T}{T_c}\right)^{3/2}$$
Bose-Einstein Condensate

At $T < T_c$

\[
\frac{N_{k=0}}{N_{\text{tot}}} = 1 - \left(\frac{T}{T_c} \right)^{3/2}
\]

At finite temperature we have a mixture of 2 fluids:

BEC + Normal fluid
Bose-Einstein Condensate

At $T < T_c$

\[
\frac{N_{k=0}}{N_{tot}} = 1 - \left(\frac{T}{T_c} \right)^{3/2}
\]

At finite temperature we have a mixture of 2 fluids:

BEC + Normal fluid

BEC exhibits superfluidity if it is a condensate of interacting (repulsive) particles.
The sound waves of the superfluid (so called ’phonons’) propagate with the dispersion relation

$$\omega_k^2 \approx c_s^2 k^2 + \frac{k^4}{4m^2}$$
The sound waves of the superfluid (so called 'phonons') propagate with the dispersion relation

\[\omega_k^2 \approx c_s^2 k^2 + \frac{k^4}{4m^2} \]

For the contact 2-point interactions with coupling constant \(\lambda \)

\[c_s^2 = \frac{\lambda n}{m^3} \]
Superfluidity

For small momenta

\[\omega_k = c_s k \]
Superfluidity

For small momenta

\[\omega_k = c_s k \]

Consider an impurity moving through the fluid with velocity \(v \).
Superfluidity

For small momenta

\[\omega_k = c_s k \]

Consider an impurity moving through the fluid with velocity \(v \). The dissipation happens through the process

\[\text{Impurity} \rightarrow \text{Impurity} + \text{phonon} \]

Superfluidity

For small momenta

\[\omega_k = c_s k \]

Consider an impurity moving through the fluid with velocity \(v \). The dissipation happens through the process

\[\text{Impurity} \rightarrow \text{Impurity} + \text{phonon} \]

Landau’s criterion for superfluidity

\[v < c_s \]
Superfluid

It is a degenerate state of interacting bosons.
Superfluid

It is a degenerate state of interacting bosons.

e.g.

\[\mathcal{L} = -|\partial \psi|^2 - m^2 |\psi|^2 - \frac{\lambda}{2} |\psi|^4 \]
Superfluid

It is a degenerate state of interacting bosons.

e.g.

\[\mathcal{L} = -|\partial \psi|^2 - m^2|\psi|^2 - \frac{\lambda}{2}|\psi|^4 \]

We are looking for a state with large number of particles in $k = 0$ state.
Superfluid

It is a degenerate state of interacting bosons.

e.g.

\[\mathcal{L} = -|\partial \psi|^2 - m^2 |\psi|^2 - \frac{\lambda}{2} |\psi|^4 \]

We are looking for a state with large number of particles in $k = 0$ state.

This corresponds to the homogeneous classical solution.
Let’s try

\[\Psi = ve^{i\mu t} \]
Let’s try

\[\Psi = ve^{i\bar{\mu}t} \]

This is the solution as long as

\[\bar{\mu}^2 - m^2 - \lambda v^2 = 0 \]
Superfluid

Let’s try

\[\Psi = v e^{i \tilde{\mu} t} \]

This is the solution as long as

\[\tilde{\mu}^2 - m^2 - \lambda v^2 = 0 \]

\(v \) is fixed by the concentration

\[n = 2 \tilde{\mu} v^2 \]
Fluctuations

\[\Psi = (v + \rho)e^{i(\tilde{\mu}t + \varphi)} \]
Fluctuations

$$\Psi = (\nu + \rho)e^{i(\bar{\mu}t + \varphi)}$$

Easy to show that

$$m_\rho = 2m \quad \text{and} \quad m_\varphi = 0$$
Fluctuations

\[\Psi = (v + \rho)e^{i(\mu t + \phi)} \]

Easy to show that

\[m_\rho = 2m \quad \text{and} \quad m_\phi = 0 \]

We can integrate out \(\rho \) to get

\[\mathcal{L} \propto X^2 \quad \text{with} \quad X \equiv \mu + \dot{\phi} - \frac{\vec{\nabla} \phi^2}{2m} \]
Fluctuations

\[\Psi = (\nu + \rho)e^{i(\mu t + \phi)} \]

Easy to show that

\[m_\rho = 2m \quad \text{and} \quad m_\phi = 0 \]

We can integrate out ρ to get

\[\mathcal{L} \propto X^2 \quad \text{with} \quad X \equiv \mu + \dot{\phi} - \frac{(\vec{\nabla} \phi)^2}{2m} \]

For generic potential we get a generic function of X.
Unified Framework

\[\mathcal{L}_{\text{MOND}} \sim \left[(\vec{\nabla} \varphi)^2 \right]^{3/2} \]

vs

\[\mathcal{L}_{\text{superfluid}} = P(X) \quad \text{with} \quad X \equiv \mu + \dot{\varphi} - \frac{(\vec{\nabla} \varphi)^2}{2m} \]

\(P \) depends on the properties of the superfluid.
Fractional Powers?

\[\mathcal{L}_{\text{superfluid}} \sim X^{3/2} \]
Fractional Powers?

\[\mathcal{L}_{\text{superfluid}} \sim X^{3/2} \]

Unitary Fermi Gas is described by

\[\mathcal{L}_{\text{UFG}} \sim X^{5/2} \]
\(X^{3/2} ? \)

Upon BEC, it exhibits superfluidity.
\[X^{3/2}? \]

\[\mathcal{L} = -|\partial_{\mu} \Phi|^2 - m^2 |\Phi|^2 - \lambda |\Phi|^6 \]
\[\mathcal{L} = -|\partial_\mu \Phi|^2 - m^2 |\Phi|^2 - \lambda |\Phi|^6 \]

Upon BEC, it exhibits superfluidity.

EFT for phonons is

\[\mathcal{L} \sim X^{3/2} \]
BEC of Dark Matter

For degeneracy

\[\lambda_{dB} \sim \frac{1}{mv} > \ell \equiv \left(\frac{m}{\rho} \right)^{1/3} \]
BEC of Dark Matter

For degeneracy

\[\lambda_{dB} \sim \frac{1}{mv} \quad > \quad \ell \equiv \left(\frac{m}{\rho} \right)^{1/3} \]

Thermalization requirement

\[\Gamma \gtrsim t_{\text{dyn}}^{-1} \]
Density Profile

At virialization we expect NFW profile

As density increases, it becomes easier to satisfy the condensation criteria.
Density Profile

At virialization we expect NFW profile

As density increases, it becomes easier to satisfy the condensation criteria.

Therefore, the region above some critical density will transform into the superfluid.
Density Profile

Galaxies: $R_{\text{core}} > R / 3 \Rightarrow m < 1.5 \left(\frac{\sigma}{m_0 \cdot 0.5 \text{ cm}^2/\text{g}} \right)^{1/4} \text{eV}$

Clusters: $R_{\text{core}} < R / 10 \Rightarrow m > 0.75 \left(\frac{\sigma}{m_0 \cdot 0.5 \text{ cm}^2/\text{g}} \right)^{1/4} \text{eV}$
Density Profile

Galaxies: \(R_{\text{core}} > R/3 \) \(\Rightarrow \) \(m < 1.5 \left(\frac{\sigma/m}{0.5 \text{ cm}^2/\text{g}} \right)^{1/4} \) eV

Clusters: \(R_{\text{core}} < R/10 \) \(\Rightarrow \) \(m > 0.75 \left(\frac{\sigma/m}{0.5 \text{ cm}^2/\text{g}} \right)^{1/4} \) eV
Density Profile

Galaxies: \(R_{\text{core}} > R/3 \) \(\Rightarrow \) \(m < 1.5 \left(\frac{\sigma/m}{0.5 \text{ cm}^2/\text{g}} \right)^{1/4} \) eV

Clusters: \(R_{\text{core}} < R/10 \) \(\Rightarrow \) \(m > 0.75 \left(\frac{\sigma/m}{0.5 \text{ cm}^2/\text{g}} \right)^{1/4} \) eV
Cosmology:

DM with eV mass must be produced out of equilibrium. For instance, through axion-like vacuum displacement mechanism.
Cosmology:

DM with eV mass must be produced out of equilibrium. For instance, through axion-like vacuum displacement mechanism.

DM particles are generated when $H \sim m$, corresponding to

$$T_{\text{baryons}} \sim \sqrt{mM_{\text{pl}}} \sim 50 \text{ TeV}$$
Cosmology:

DM with eV mass must be produced out of equilibrium. For instance, through axion-like vacuum displacement mechanism.

DM particles are generated when $H \sim m$, corresponding to

$$T_{\text{baryons}} \sim \sqrt{mM_{\text{pl}}} \sim 50 \text{ TeV}$$

As soon as it is generated, DM becomes superfluid with

$$\left(\frac{T}{T_c} \right)_{\text{cosmo}} \sim 10^{-28}$$
Cosmology:

DM with eV mass must be produced out of equilibrium. For instance, through axion-like vacuum displacement mechanism.

DM particles are generated when $H \sim m$, corresponding to

$$T_{\text{baryons}} \sim \sqrt{mM_{\text{pl}}} \sim 50 \text{ TeV}$$

As soon as it is generated, DM becomes superfluid with

$$\left(\frac{T}{T_c} \right)_{\text{cosmo}} \sim 10^{-28} \quad \text{vs} \quad \left(\frac{T}{T_c} \right)_{\text{MW}} \sim 10^{-2}$$
Superfluid Properties:

Low energy degrees of freedom are phonons.
In general

\[\mathcal{L} = P(X), \quad \text{with} \quad X \equiv \mu + \dot{\phi} - \frac{(\nabla \phi)^2}{2m} \]
Superfluid Properties:

Low energy degrees of freedom are phonons.
In general

\[\mathcal{L} = P(X), \quad \text{with} \quad X \equiv \mu + \dot{\phi} - \frac{(\vec{\nabla}\phi)^2}{2m} \]

We conjecture that the superfluid has MOND-like action

\[P(X) = \Lambda m^{3/2} X \sqrt{|X|} \]
Superfluid Properties:

Low energy degrees of freedom are phonons. In general

\[\mathcal{L} = P(X), \quad \text{with} \quad X \equiv \mu + \dot{\varphi} - \frac{(\vec{\nabla} \varphi)^2}{2m} \]

We conjecture that the superfluid has MOND-like action

\[P(X) = \Lambda m^{3/2} X \sqrt{|X|} \]

To mediate MOND force, phonons must couple to baryons

\[\mathcal{L}_{\text{int}} = -\alpha \frac{\Lambda}{M_{\text{pl}}} \varphi \rho_b \]
Superfluid Properties:

The pressure of the condensate is

\[P(\mu) = \Lambda (m\mu)^{3/2} \]
Superfluid Properties:

The pressure of the condensate is

\[P(\mu) = \Lambda (m\mu)^{3/2} \]

The equation of state is

\[P = \frac{\rho^3}{12\Lambda^2 m^6} \]

The sound speed is given by \(c_s = \sqrt{\frac{2\mu}{m}} \)
Core Profile:

Assuming hydrostatic equilibrium

\[\rho(r) \simeq \rho_0 \cos^{1/2} \left(\frac{\pi}{2} \frac{r}{R} \right); \quad r \leq R \]
Core Profile:

Assuming hydrostatic equilibrium

\[\rho(r) \approx \rho_0 \cos^{1/2} \left(\frac{\pi}{2} \frac{r}{R} \right); \quad r \leq R \]

For fiducial values \(m = \text{eV} \) and \(\Lambda = 0.04 \text{ meV} \), for \(M_{\text{DM}} = 10^{12} M_\odot \), we have

\[R \approx 120 \text{ kpc} \]

The superfluid scenario provides the simple resolution to the cusp-core and "too-big-to-fail" problems.
In order to have \(w \ll 1 \) at matter radiation equality, we need \(\Lambda \gg 0.1 \) eV. This is five orders of magnitude larger than the fiducial value \(\Lambda = 0.04 \) meV assumed in galaxies. Recall that \((T/T_c)_{\text{cosmo}} \approx 10^{-28} \) \((T/T_c)_{\text{MW}} \approx 10^{-2} \).
Cosmology

\[w = \frac{P}{\rho} = \frac{\rho^2}{12\Lambda^2 m^6} \]

In order to have \(w \ll 1 \) at matter radiation equality, we need

\[\Lambda \gg 0.1 \text{ eV} \]

This is five orders of magnitude larger than the fiducial value \(\Lambda = 0.04 \text{ meV} \) assumed in galaxies.
Cosmology

\[w = \frac{P}{\rho} = \frac{\rho^2}{12\Lambda^2 m^6} \]

In order to have \(w \ll 1 \) at matter radiation equality, we need \(\Lambda \gg 0.1 \text{ eV} \).

This is five orders of magnitude larger than the fiducial value \(\Lambda = 0.04 \text{ meV} \) assumed in galaxies.

Recall that

\[\left(\frac{T}{T_c} \right)_{\text{cosmo}} \approx 10^{-28}, \quad \left(\frac{T}{T_c} \right)_{\text{MW}} \approx 10^{-2} \]
Phonon-Mediated Force Between Baryons

In the limit of large phonon gradients

\[a_\phi(r) \simeq \sqrt{\frac{\alpha^3 \Lambda^2}{M_{Pl}}} \frac{G_N M_b(r)}{r^2} \]
Phonon-Mediated Force Between Baryons

In the limit of large phonon gradients

\[a_\phi(r) \approx \sqrt{\frac{\alpha^3 \Lambda^2}{M_{Pl}} \frac{G_N M_b(r)}{r^2}} \]
IC 2574: $M_b = 3.4 \times 10^9 M_\odot$.
Closer Look at Rotation Curves

LB, Benoit Famaey, Justin Khoury, to appear

IC 2574: \(M_b = 3.4 \times 10^9 M_\odot \).

\[
a_{\text{phonons}} < a_{N-\text{total}} < a_{\text{MOND}}
\]

\[
a_0^{\text{superfluid}} < a_0^{\text{MOND}}
\]
Closer Look at Rotation Curves

LB, Benoit Famaey, Justin Khoury, to appear

\[a_0^{\text{superfluid}} = 0.73a_0^{\text{MOND}} \]
Rotation Curves

LB, Benoit Famaey, Justin Khoury, to appear

\[M_b = 3.4 \times 10^9 M_\odot \]

\[M_{\text{total}} = 10 M_b \]

\[R_b = 12 \text{kpc} \]

\[R_{\text{core}} = 49 \text{kpc} \]

\[R_{\text{vir}} = 49 \text{kpc} \]

\[M_b = 1.6 \times 10^{11} M_\odot \]

\[M_{\text{total}} = 10 M_b \]

\[R_b = 60 \text{kpc} \]

\[R_{\text{core}} = 65 \text{kpc} \]

\[R_{\text{vir}} = 126 \text{kpc} \]
Validity of EFT and the Solar System

MOND regime corresponds to large phonon gradients

\[\frac{\varphi'^2}{2m} \gg \mu \]

In terms of superfluid velocity \(v_s = |\vec{\nabla}\varphi|/m \), this becomes

\[v_s \gg c_s \]

Thus, violating Landau’s criterion.

This is not surprising, since we are interested in generating large coherent phonon background.

High derivative terms need to be small. This is so as long as \(r \gg \Lambda_s^{-1} \).
Validity of EFT and the Solar System

We should also verify that

\[v_s \ll v_c \equiv \left(\frac{\rho}{m^4} \right)^{1/3} \]

Leading to

\[r \gg 0.2 \left(\frac{M_b}{10^{11} M_\odot} \right)^{1/2} \left(\frac{m}{\text{eV}} \right)^{-1/2} \left(\frac{\Lambda}{\text{meV}} \right)^{-5/6} \text{ kpc} \]

Applied to the Sun

\[r \gg 250 \left(\frac{m}{\text{eV}} \right)^{-1/3} \left(\frac{\Lambda}{\text{meV}} \right)^{-5/9} \text{ AU} \]
Gravitational Lensing

We might need to couple baryons to

\[\tilde{g}_{\mu\nu} \simeq g_{\mu\nu} - \frac{2\alpha}{M_{\text{pl}}} \varphi \left(\gamma g_{\mu\nu} + (1 + \gamma) u_\mu u_\nu \right) \]

In TeVeS \(\gamma = 1 \).
Gravitational Lensing

We might need to couple baryons to

\[\tilde{g}_{\mu\nu} \simeq g_{\mu\nu} - \frac{2\alpha}{M_{pl}} \varphi \left(\gamma g_{\mu\nu} + (1 + \gamma) u_\mu u_\nu \right) \]

In TeVeS \(\gamma = 1 \).

In our case we have DM, unlike TeVeS, and hence we may even get away with \(\gamma = -1 \).
In general, the outcome depends on relative fraction of superfluid vs normal components in the clusters.
Merging Clusters:

In general, the outcome depends on relative fraction of superfluid vs normal components in the clusters.

If the infall velocity is sub-sonic, the superfluid components should pass through each other with negligible friction, however the normal components should be slowed down.
Summary

Assumptions:

- Bose-Einstein condensation
- Superfluid with equation of state $p \sim \rho^3$
- Phonon-mediated force
- Temperature dependance of parameters

Results: DM halos are superfluids at finite temperature, with interesting phenomenology.

Next Step: Finding a viable microscopic theory.
Summary

Assumptions:

- Bose-Einstein condensation
- Superfluid with equation of state \(p \sim \rho^3 \)
- Phonon-mediated force
- Temperature dependance of parameters

Results: DM halos are superfluids at finite temperature, with interesting phenomenology.
Summary

Assumptions:

- Bose-Einstein condensation
- Superfluid with equation of state \(p \sim \rho^3 \)
- Phonon-mediated force
- Temperature dependance of parameters

Results: DM halos are superfluids at finite temperature, with interesting phenomenology.

Next Step: Finding a viable microscopic theory.