SM-like h125: Additional Scalars & their Expected Experimental Signatures

Nausheen R. Shah
Wayne State University
May 15, 2017

In Collaboration with:
M. Carena, H. Haber, I. Low & C. Wagner arXiv:1510.09137
S. Baum, K. Freese & B. Shakya arXiv:1703.07800

Baryon Lepton Violation 2017, Case Western Reserve University, May 15-18
The Higgs Lamp Post:
$m_h \sim 125$ GeV + SM-like

```
No New States at the LHC!!!
```

Alignment

\[<h_{125}> \sim v_{SM} \]

SUSY \rightarrow NMSSM
\[W = \lambda S H_u H_d + \frac{\kappa}{3} S^3 \]

\[-\mathcal{L}_{\text{soft}} = \lambda A_S S H_u H_d + \frac{1}{3} \kappa A_h S^3 \]

- 2 Doublets \((H_u, H_d)\) + Singlet \(S\)
- Singlet couples only to the Higgs Sector.
- vevs: \((H_u, H_d, S) = (v_u, v_d, v_S = \mu / \lambda)\)

- 3 CP-Even Higgses:
 - Mixing between all three \((H_u, H_d, S)\).
- 2 CP-Odd Higgses:
 - Mixtures of “MSSM” \(m_A\) and singlet.
- Charged Higgs
- Singlet-like CP-even and odd masses anti-correlated.
- Singlino mass: \(2 \kappa \mu / \lambda\)
\[
H_{SM} = \sin \beta H_u + \cos \beta H_d \\
H_{NSM} = -\cos \beta H_u + \sin \beta H_d
\]
\[
\langle H_{SM} \rangle = \nu \\
\langle H_{NSM} \rangle = 0
\]

- \(H_{SM} \) has completely SM-like couplings.
- Mixing between \(H_{SM} \) and \(H_{NSM} \),

 “\(\cos (\beta - \alpha) \)”, gives non-SM behavior of observed \(h_{125} \).

If
\[
\cos (\beta - \alpha) = 0
\]
SM-like HIGGS!!

ALIGNMENT
• Interaction basis: (H_u, H_d, S)
 - H_u: Couples only to up-type fermions
 - H_d: Couples only to down-type fermions
 - S: Only couples to Higgses

$$<H_u> = v_u$$
$$<H_d> = v_d$$
$$t_\beta = v_u/v_d$$
$$<S> = \mu/\lambda$$
• Interaction basis: \((H_u, H_d, S)\)
 - \(H_u\): Couples only to up-type fermions
 - \(H_d\): Couples only to down-type fermions
 - \(S\): Only couples to Higgses

• “Extended” Higgs basis: \((H_{NSM}, H_{SM}, S)\)
 - \(H_{NSM}\): \((\text{down, up, } V) = (y_d \ t_\beta, y_u / t_\beta, 0)\)
 - \(H_{SM}\): \((\text{down, up, } V) = (y_d, y_u, g_{hVV})\)

\[
\begin{align*}
<H_u> &= v_u \\
<H_d> &= v_d \\
t_\beta &= v_u / v_d \\
<S> &= \mu / \lambda
\end{align*}
\]

\[
\begin{align*}
<H_{NSM}>& = 0 \\
<H_{SM}>& = v
\end{align*}
\]
• Interaction basis: \((H_u, H_d, S)\)
 - \(H_u\): Couples only to up-type fermions
 - \(H_d\): Couples only to down-type fermions
 - \(S\): Only couples to Higgses

• "Extended" Higgs basis: \((H_{NSM}, H_{SM}, S)\)
 - \(H_{NSM}\): \((\text{down, up, } V) = (y_d t^\beta, y_u/t^\beta, 0)\)
 - \(H_{SM}\): \((\text{down, up, } V) = (y_d, y_u, g_{hVV})\)

• Mass basis: \((H^3, H^2, H^1)\)
 - \(H^i = \kappa_{NSM}^i H_{NSM} + \kappa_{SM}^i H_{SM} + \kappa_S^i S\)

\[<H_u> = v_u\]
\[<H_d> = v_d\]
\[t^\beta = v_u/v_d\]
\[<S> = \mu/\lambda\]

\[<H_{NSM}> = 0\]
\[<H_{SM}> = v\]
• Interaction basis: \((H_u, H_d, S)\)
 - \(H_u\): Couples only to up-type fermions
 - \(H_d\): Couples only to down-type fermions
 - \(S\): Only couples to Higgses

• “Extended” Higgs basis: \((H_{NSM}, H_{SM}, S)\)
 - \(H_{NSM}\): (down, up, \(V\)) = \((y_d t_\beta, y_u / t_\beta, 0)\)
 - \(H_{SM}\): (down, up, \(V\)) = \((y_d, y_u, g_{hVV})\)

• Mass basis: \((H^3, H^2, H^1) \rightarrow (H, h_{125}, hS)\)
 - \(H^i = \kappa_{NSM}^{i} H_{NSM} + \kappa_{SM}^{i} H_{SM} + \kappa_{S}^{i} S\)

\[
\begin{align*}
<H_u> &= v_u \\
<H_d> &= v_d \\
t_\beta &= v_u / v_d \\
<S> &= \mu / \lambda \\
<H_{NSM}> &= 0 \\
<H_{SM}> &= v \\

\text{Alignment:} \\
\kappa_{NSM}^{h_{125}} &= 0 \\
\kappa_{S}^{h_{125}} &= 0
\end{align*}
\]
125 GeV Higgs Naturally!

Alignment (No-Mixing):

\[m_h^2 \simeq \frac{\lambda^2 v^2}{2} \sin^2 2\beta + M_Z^2 \cos^2 2\beta + \Delta\tilde{t} \]

\[\Delta\tilde{t} = -\cos 2\beta (m_h^2 - M_Z^2) \]

Well Known

- 125 GeV Higgs
- Tree-level contribution to Higgs mass from \(\lambda \).
- \(\lambda \approx 0.65-0.7 \)
- Low \(\tan \beta \)
- Light Stops
• Perturbative up to GUT scale.
 • $\lambda_{\text{max}} \sim 0.7$, $\kappa_{\text{max}} \sim \lambda/2$

Not so well known:

• Leads to excellent Alignment (very little mixing with Heavy Higgs) in the m_A- tan β plane.

\[
\lambda_{\text{alt}}^2 = \frac{m_h^2 - M_Z^2 c_2^2}{v^2 s_\beta^2}
\]

M. Carena, H. Haber, I. Low, N.R.S., C. Wagner, ‘15
Singlet Alignment

Singlino: \(2 \kappa \mu / \lambda \sim < \mu\)

M. Carena, H. Haber, I. Low, N.R.S., C. Wagner, ’15
• LSP could be stable on detector time-scales but unstable on universe time-scale
 • Consider collider phenomenology independent of cosmological constraints
• First question: Alignment with or without decoupling ??
 • Most interesting LHC phenomenology when all states light (no decoupling)
 • Pursue NMSSM parameter space using “alignment”
 • Pinpoint promising signatures
 • In particular will focus on mono-Higgs

Heavy Higgs Pheno
NMSSMTools Scans asking for SM-like h125

Decoupling
\(m_A < 3\) TeV

\[\chi^2_{\text{alt}} = \frac{m_h^2 - M_Z^2 c_2\beta}{\nu^2 s_\beta^2} \]

\[1 - \frac{m_A^2}{4\mu^2} s_\beta^2 - \frac{\kappa}{2\lambda} s_\beta^2 = 0\]

Misalignment?
• $m_{A_2} \sim m_{H_3}$
• Completely “MSSM”-like A_2 has $xsec \sim 2$ “MSSM”-like H_3
• Mixing with singlets will reduce these $xsec$
• A_2 can mix significantly with A_1 consistent with alignment conditions
 • Still comparable $xsec$ to H_3
 • Significant BR into non-standards: $\chi_i \chi_1$, $A_1 h_{125}$, $h_S Z$
• H_3 mixes less with singlet, but enough to also have significant non-standard decays:
 • $\chi_i \chi_1$, $h_S h_{125}$, $A_1 Z$
• Apart from tt, significant decays into $H_2 + H_1$ and neutralino/charginos

Generically:
Coupling to h_{125} pair & ZZ, WW suppressed due to alignment.

$\tan \beta = 2$ $\tan \beta = 2.5$ $\tan \beta = 3$

H_3 BR (A_2 BR similar)

M. Carena, H. Haber, I. Low, N.R.S., C. Wagner, '15
If A_1 or $h_S > 2\chi$, $\text{BR}(\chi\chi)$ large
Otherwise MSSM-like BR

A_2 Non-Standard BR
• A/H\rightarrow Z h_s/a \rightarrow Z \text{ Visible}

• A/H \rightarrow h_{125} a/h_s \rightarrow h_{125} \text{ Visible}

(pseudoscalars cannot decay to WW)

Signatures?
Visible (bb/tt/WW)
Mono-Z

- $A/H \rightarrow \chi_3 \chi_1 \rightarrow Z \chi_1 \chi_1$

(CMS -- arXiv:1701.02042)

- $A/H \rightarrow Z h_S/a \rightarrow Z \chi_1 \chi_1$

$gg \rightarrow H_3 \rightarrow Z A_1 \rightarrow Z \chi_1 \chi_1$

$\Phi_a = A_1$

$\Phi_b = H_3$

$gg \rightarrow A_2 \rightarrow Z h_1 \rightarrow Z \chi_1 \chi_1$

$\Phi_a = A_2$

$\Phi_b = h_1$

$\Phi_{h_1/z} \rightarrow Z \chi_1 \chi_1$

Nausheen R. Shah

May 15, 2017
Mono-H

- $A/H \rightarrow \chi_3 \chi_1 \rightarrow h_{125} \chi_1 \chi_1$

$gg \rightarrow H_3/A_2 \rightarrow \chi_3 \chi_1 \rightarrow h_{\text{SM}} \chi_1 \chi_1$

$gg \rightarrow H_3 \rightarrow h_{\text{SM}} h_i \rightarrow h_{\text{SM}} \chi_1 \chi_1$

$\Phi_a = h_i$

$\Phi_b = H_3$

$\Phi_a = A_2$

$\Phi_b = A_1$

$gg \rightarrow A_2 \rightarrow h_{\text{SM}} A_1 \rightarrow h_{\text{SM}} \chi_1 \chi_1$

$\Phi_a^2 \rightarrow h_{\text{SM}} \chi_1 \chi_1$

$\Phi_a^2 \rightarrow h_{\text{SM}} \Phi_1 \rightarrow h_{\text{SM}} \chi_1 \chi_1$
A. Can add up contributions from both H_3 and A_2

B. Expect stronger sensitivity — h_{125} back-to-back with MET

Mono-Higgs (to $\gamma \gamma$)
Depending on mass spectrum, can have sensitivity \sim sub-fb at 300 fb$^{-1}$

As expected much better reach for channel (B)

Model-Independent Reach?
As expected much better coverage from channel (B) – even when tt open

S. Baum, K. Freese, NRS & B. Shakya, ‘17
Conclusions and Outlook

• $m_h = 125$ GeV + SM-like
 • Alignment: Decoupling or Prediction for parameters.

• NMSSM Higgs sector at low $\tan \beta$.
 • Perturbativity and the requirement of alignment with the singlet
 • light singlets (both CP-even and odd) and singlino + higgsinos (charged and neutral).
 • Large BR of non-SM Higgs into singlet like states + neutralinos
 • Mono-Higgs reach studied in detail
 • Complimentary channels:
 • mono-Z + Z-visibles (tt, bb, WW)
 • H-visibles (tt, bb, WW)
 • Generic 2HDM+Singlet may not have light neutralinos, but due to SM-like h_{125}, BRs of non-SM Higgs into h_{125} pairs and WW/ZZ suppressed
\[pp \rightarrow h(\gamma\gamma) + \chi \; \bar{\chi}, \ Z'_B \] model
\[\sin^2 \theta = 0.3, \ g_q = 1/3, \ g_\chi = 1, \ m_\chi = 1 \text{ GeV} \]
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tan\beta$</td>
<td>$1 - 5$</td>
</tr>
<tr>
<td>λ</td>
<td>$0.5 - 1$</td>
</tr>
<tr>
<td>κ</td>
<td>$-0.5 - 0.5$</td>
</tr>
<tr>
<td>A_λ</td>
<td>$-0.5 - 0.5$ TeV</td>
</tr>
<tr>
<td>A_κ</td>
<td>$-0.5 - 0.5$ TeV</td>
</tr>
<tr>
<td>μ_{eff}</td>
<td>$-0.5 - 0.5$ TeV</td>
</tr>
<tr>
<td>M_{Q_3}</td>
<td>$1 - 10$ TeV</td>
</tr>
</tbody>
</table>

TABLE I: NMSSM parameter ranges used in NMSSMTools scans.
• How much “non-standardness” is allowed by h125 measurements??

• $\kappa_{NSM} H_{NSM} + \kappa_{SM} H_{SM} + \kappa_S S$

• Singlet: Only couples to Higgses

• Ratios to SM:
 • $g_{hgg} = (\kappa_{SM} + \kappa_{NSM}/t\beta)$
 • $g_{hdd} = (\kappa_{SM} - \kappa_{NSM} t\beta)$
 • $g_{hVV} = \kappa_{SM}$

• Significant κ_S OK
• Large κ_{NSM} from sign change of g_{hdd}

Contamination allowed in h125 ??
• CMS 1505.03831

• Strong constraints on SM-like Higgs decay to $VV \sim 12-6\%$ SM value for masses 160-500 GeV.

Heavy H to VV ?
• Strong constraints on SM-like Higgs decay to V V ~12-6% SM value for masses 160-500 GeV.

• Only κ^i_{SM} couples to V V

• What does this imply for SM and NSM components of extra Higgs??
 • $160 \text{ GeV} < m_{hS} < 350 \text{ GeV}$
 • $\text{BR}(WW+ZZ) \sim 1$
 • gF production XS impacted.

• With $\kappa^{h_{125}}_{NSM} \sim 0$
 • $\kappa^{hS}_{SM} \sim \kappa^{h_{125}}_{S}$
 • $\kappa^{h_{125}}_{S}$ smaller than allowed by h_{125} measurements!

Direct Searches for heavy resonances?
• NMSSMTools + HiggsBounds/Signals
• Allowed “misalignment”

\[\tan \beta = 2 \]

\[\tan \beta = 2.5 \]

\[\tan \beta = 3 \]

Misalignment

M. Carena, H. Haber, I. Low, N.R.S., C. Wagner, ’15
Singlet Spectra

Density of scan not relevant

\[\kappa^{\text{max}}, \lambda = 0.65 \]

singlet always less than \(m_H/2 \)

\[\tan \beta = 2 \quad \tan \beta = 2.5 \quad \tan \beta = 3 \]

M. Carena, H. Haber, I. Low, N.R.S., C. Wagner, '15
MSSM-like A and H decays into tt.

- Decay BR depends on $\tan \beta$

$\tan \beta = 2$, $\tan \beta = 2.5$, $\tan \beta = 3$.

MSSM-like m_H

MSSM-like m_A

Nausheen R. Shah

BLV 2017

May 15, 2017

32
Apart from tt, significant decays into H_2+H_1 and neutralino/charginos.

Coupling to h_{125} pair suppressed due to alignment.

$\tan \beta = 2$, $\tan \beta = 2.5$, $\tan \beta = 3$

MSSM-like H BR

M. Carena, H. Haber, I. Low, N.R.S., C. Wagner, '15

Nausheen R. Shah

BLV 2017

May 15, 2017
• Into singlet-like H1/H2-Z and inos

M. Carena, H. Haber, I. Low, N.R.S., C. Wagner, '15

\[S_{H,s} \approx -\frac{\lambda v}{2\mu} c_{2\beta} s_{2\beta} \]

\[
\begin{align*}
\text{BR} (A \rightarrow h_s Z) \\
\text{BR} (A \rightarrow \chi^0 \chi'^0) \\
\end{align*}
\]

. \(\tan \beta = 2 \)
. \(\tan \beta = 2.5 \)
. \(\tan \beta = 3 \)
• Singlet mainly decays to bb and WW
XS factor ~ 4 at 14 TeV compared to 8 TeV

CMS PAS HIG-15-001

CMS 1505.03831

HVV/SM ~10%
XS factor ~ 4 at 14 TeV compared to 8 TeV

CMS PAS HIG-15-001

$gg \rightarrow A \rightarrow Z h_S \rightarrow ll bb$, $\sigma / \sigma_{\text{Obs. Lim}}$

- Currently Excluded
- $0.5 - 1$
- $0.1 - 0.5$
- $10^{-2} - 10^{-1}$
- $< 10^{-2}$

8 TeV

CMS 1505.03831
HVV/SM ~10%
h125 Components
- Tree-level mass matrix in the \((H_{NSM}, H_{SM}, S)\) basis:

\[
\begin{pmatrix}
 m_A^2 + s_{2\beta} \left(m_Z^2 - \frac{1}{2} \lambda^2 v^2 \right)
 & s_{2\beta} c_{2\beta} \left(m_Z^2 - \frac{1}{2} \lambda^2 v^2 \right)
 & -\frac{\lambda v \mu}{\sqrt{2}} c_{2\beta} \left(\frac{m_A^2}{2\mu^2} s_{2\beta} + \frac{\kappa}{\lambda} \right) \\
 c_{2\beta} m_Z^2 + \frac{1}{2} \lambda^2 v^2 s_{2\beta}
 & \frac{\lambda^2 v^2 s_{2\beta}}{4} \left(\frac{m_A^2 s_{2\beta}}{2\mu^2} - \frac{\kappa}{2\lambda} s_{2\beta} \right)
 & \sqrt{2} \lambda v \mu \left(1 - \frac{m_A^2}{4\mu^2} s_{2\beta}^2 - \frac{\kappa}{2\lambda} s_{2\beta} \right)
\end{pmatrix}
\]

- **Alignment:** Mixing between \(H_{NSM}-H_{SM}=0\) & \(H_{SM}-S=0\)

- Alignment conditions, (+ stop corrections to always obtain \(h_{125}\)):

\[
\mathcal{M}_S^2(1, 2) = \frac{1}{t_\beta} \left[c_{2\beta} m_Z^2 - \mathcal{M}_S^2(2, 2) + \lambda^2 v^2 s_{2\beta}^2 + \frac{3m_t^4 X_t \left(X_t - Y_t \right)}{4\pi^2 v^2 M_S^2} \left(1 - \frac{X_t^2}{6 M_S^2} \right) \right] = 0
\]

\[
\mathcal{M}_S^2(2, 3) = 2\lambda v \mu \left(1 - \frac{m_A^2 s_{2\beta}^2}{4\mu^2} - \frac{\kappa s_{2\beta}}{2\lambda} \right) = 0
\]

NSM-SM mixing cancels for

\[
\lambda_{alt}^2 = \frac{m_h^2 - M_Z^2 c_{2\beta}}{v^2 s_{2\beta}^2}
\]

"Extended" Higgs Basis
\[W \supset \lambda S H_u H_d + \frac{M}{2} S^2 + \mu H_u H_d \quad V_{\text{soft}} \supset m_S^2 |S|^2 \]

\[V \supset |F_S|^2 = |\lambda H_u H_d + MS|^2 \]

\[\delta m_h^2 = \lambda^2 v^2 \sin^2 2\beta \left(1 - \frac{M^2}{M^2 + m_S^2} \right) \]
• It is well known that in the NMSSM there are new contributions to the lightest CP-even Higgs mass,

\[W = \lambda S H_u H_d + \frac{\kappa}{3} S^3 \]

\[m_h^2 \simeq \lambda^2 v^2 \sin^2 2\beta + M_Z^2 \cos^2 2\beta + \Delta \]

• It is perhaps less known that it leads to sizable corrections to the mixing between the MSSM like CP-even states. In the Higgs basis,

\[M_Z^2 (1, 2) \simeq \frac{1}{\tan \beta} \left(m_h^2 - M_Z^2 \cos 2\beta - \lambda^2 v^2 \sin^2 \beta + \delta \right) \]

• The last term is the one appearing in the MSSM, that are small for moderate mixing and small values of \(\tan \beta \)

• So, alignment leads to a determination of lambda,

• The values of lambda end up in a very narrow range, between 0.65 and 0.7 for all values of tanbeta, that are the values that lead to naturalness with perturbativity up to the GUT scale

\[\lambda^2 = \frac{m_h^2 - M_Z^2 \cos 2\beta}{v^2 \sin^2 \beta} \]
It is clear from these plots that the NMSSM does an amazing job in aligning the MSSM-like CP-even sector, provided \(\lambda \) is of about 0.65.
• In the (“MSSM \(m_A \)”, Singlet) basis:

\[
M_P^2 = \begin{pmatrix}
 m_A^2 & \frac{\lambda v}{\sqrt{2}} \left(\frac{m_A^2}{2\mu} s_{2\beta} - \frac{3\kappa \mu}{\lambda} \right) \\
 \frac{1}{2} \lambda^2 v^2 s_{2\beta} \left(\frac{m_A^2}{4\mu^2} s_{2\beta} + \frac{3\kappa}{2\lambda} \right) - \frac{3\kappa A \kappa \mu}{\lambda}
\end{pmatrix}
\]

\[
m_A^2 = \frac{\mu}{s_\beta c_\beta} \left(A_\lambda + \frac{\kappa \mu}{\lambda} \right).
\]

CP-Odd Mass Matrix
\[\tan \beta = 2, \tan \beta = 2.5, \tan \beta = 3 \]

\[\kappa_L, \lambda = 0.65 \]

\[0.25 \kappa_L, \lambda = 0.65 \]

\[\left(1 - \frac{m_A^2 s_{2\beta}^2}{4 \mu^2} - \frac{\kappa s_{2\beta}}{2 \lambda}\right) = 0 \]
• Larger $\tan \beta \Rightarrow$ Heavier Stops \Rightarrow Larger Fine Tuning

$k_L, \lambda = 0.65$

Fine-Tuning (No-mixing in stops)
• CP-even vs. Odd

Higgs Spectra

Nausheen R. Shah

BLV 2017

May 15, 2017
• $H_1 H_1 / H_2 H_2$

H3 BR
- $tt + aZ$
- A1 H1 / A1 H2
- $t\bar{t} +$ chargino/neutralinos
\[16\pi^2 \frac{d\lambda^2}{dt} = \lambda^2 \left(3h_t^2 + 3h_b^2 + h_{\tau}^2 + 4\lambda^2 + 2\kappa^2 - g_1^2 - 3g_2^2 \right) + \frac{\lambda^2}{16\pi^2} \left(-10\lambda^4 - 9h_t^4 - 9h_b^4 - 3h_{\tau}^4 - 8\kappa^4 - 9\lambda^2 h_t^2 - 9\lambda^2 h_b^2 \right) - 3\lambda^2 h_{\tau}^2 - 12\lambda^2 \kappa^2 - 6h_t^2 h_b^2 + 2g_1^2 \lambda^2 + \frac{4}{3} g_1^2 h_t^2 - \frac{2}{3} g_1^2 h_b^2 + 2g_1^2 h_{\tau}^2 + 6g_2^2 \lambda^2 + 16g_3^2 h_t^2 + 16g_3^2 h_b^2 + \frac{23}{2} g_1^4 + \frac{15}{2} g_2^4 + 3g_1^2 g_2^2 \right),
\]

\[16\pi^2 \frac{d \kappa^2}{dt} = \kappa^2 \left(6\lambda^2 + 6\kappa^2 \right) + \frac{\kappa^2}{16\pi^2} \left(-24\kappa^4 - 12\lambda^4 - 24\kappa^2 \lambda^2 \right) - 18h_t^2 \lambda^2 - 18h_b^2 \lambda^2 - 6h_{\tau}^2 \lambda^2 + 6g_1^2 \lambda^2 + 18g_2^2 \lambda^2 \].
1. The gluon fusion production cross section of the would be heavy MSSM states (A and H) is enhanced due to the top Yukawa contributions at low tan β, and can be of the order of a few pb.

2. The non-standard Higgs bosons can have relevant decays into the lighter singlet like Higgs bosons as well as into the light electroweakinos.

3. The decay of non-standard Higgs bosons into tops, taus and bottoms will be suppressed due to the small values of tan β and the presence of additional decays.