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1 Abstract

Alternative definitions of the stochastic integral are investigated for their ef-
ficiency in numerical computation. Specifically, the Riemann-Stieltjes path-
wise definition of the Itô and Stratonovich integrals is adapted to define
integrals based on an arbitrary sampling point γ ∈ [0, 1]. Each definition is
calculated numerically to determine the rate of convergence. Integrals are
driven by the Brownian Motion (Wiener) process. Computationally advan-
tageous definitions are found for particular integrands.
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2 Motivation

Stochastic models are an indispensable tool for creating realistic models of
physical systems, inclusive of a system’s inherent randomness. Ideally suited
for describing physical diffusions, stochastic models also find extensive ap-
plication in mathematical finance. The mathematical theory describing the
construction and properties of these models has been extensively developed
for models driven by the Brownian noise process. Brownian noise describes
continuous diffusion processes with Gaussian-distributed increments, such as
the diffusion of a drop of ink in still water.

Practical application of these models involves numerical approximation
and computer simulation of solutions to stochastic differential equations
(SDEs), thus efficient simulation methods are a priority for researchers. The
focus of this project is on comparing different approaches to numerical sim-
ulation of SDEs driven by the Brownian Motion process. Specifically, we
exploit a particular ambiguity in the definition of the stochastic integral,
namely the choice of sample point for construction of Riemann sums. This
choice can be continuously parametrized by γ ∈ [0, 1], with each choice of
γ yielding a distinct definition of the stochastic integral. The goal of this
project is to write a MATLAB script that performs numerical integration for
varying values of the parameter γ and compares the order of convergence of
the integration scheme for each choice of γ.

It is the null hypothesis that all choices should converge equally quickly,
but the discovery of a particular γ value with significantly higher order of
convergence would bear great significance for numerical simulations. While
the most computationally efficient choice of γ may not be the best choice for
modeling reasons, we are likely able to convert a solution computed using
one choice of γ to a solution corresponding to a different choice. There are
known formulas1 for converting between solutions corresponding to γ = 0
and γ = 1/2. Extending these results, one would then calculate solutions
using a computationally advantageous definition of the stochastic integral
and translate this solution to solve an SDE defined by the choice of γ pre-
scribed by modeling choices. This project probes for such a computationally
advantageous definition of the stochastic integral.

1Wong, Zakai (1965).
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3 Introduction

We begin by introducing the stochastic process known as Brownian Motion,
then elaborate on how the above-referenced parameter γ enters into the def-
inition of the stochastic integral and explain how different values of γ lead
to different definitions of the stochastic integral.

3.1 Brownian Motion

The Brownian Motion process can be introduced in many ways with vary-
ing levels of rigor. In this introduction, we shall sacrifice rigor for physical
intuition and present Brownian Motion as the limit of a random walk.

A random walk in one dimension is the path of a particle that jumps
forward or backward one unit at each discrete time step. Thus if the particle
sits at position n at time ti, then at time ti+1 the particle will be found either
at n+ 1 or n− 1 (see Figure 1).

Figure 1: In a one-dimensional random walk, a particle jumps either forward
or backward one discrete step at each discrete time point.

From this description, we can describe the probability of finding the ran-
dom walk at a particular location recursively. Calling p(ti, xn) the probability
of finding the particle at the location xn at time ti , we have

p(ti, xn) =
1

2
p(ti−1, xn−1) +

1

2
p(ti−1, xn+1), (1)

since the particle can only arrive at position n by jumping there from po-
sition xn−1 or position xn+1 (note that we are assuming that the particle
jumps forwards or backwards with equal probability and that at t0 = 0 the
particle starts at the origin, p(0, xn) = δ0(xn)). We now employ a clever
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trick: subtract from both sides of (1) the probability that the particle could
be found at position xn at time ti−1:

p(ti, xn)− p(ti−1, xn) =
1

2
[p(ti−1, xn−1) + p(ti−1, xn+1)− 2p(ti−1, xn)]

=
1

2
[p(ti−1, xn+1)− p(ti−1, xn)]− 1

2
[p(ti−1, xn)− p(ti−1, xn−1)] .

Now we begin to see a difference equation emerging: dividing by ∆t on the
left-hand side and (∆n)2 on the right-hand side, we have

p(ti, xn)− p(ti−1, xn)

∆t
=

1

2

[p(ti−1, xn+1)− p(ti−1, xn)]− [p(ti−1, xn)− p(ti−1, xn−1)]

(∆n)2

so that the left-hand side is a first-difference with respect to time and the
right-hand side is a second difference with respect to the spatial variable. In
a continuum limit ∆t→ 0, ∆n→ 0 we have a partial differential equation 2:

∂p

∂t
(t, x) =

1

2

∂2p

∂x2
(t, x). (2)

That is, the probability distribution function of the Brownian motion
process satisfies the heat equation. If we assume that the particle starts at
the origin with probability 1, then the initial state of the particle is a Dirac
delta measure, δ0. Evolving this distribution with the heat kernel, we have

p(t, x) =
1

(2πt)1/2
e−x

2/2t. (3)

Thus the probability distribution function for Brownian Motion starting at
the origin is a Gaussian distribution with mean 0 and standard deviation

√
t.

A few sample paths are plotted in Figure 2 along with the curve y =
√
t to

illustrate this property.

3.2 Stochastic Differential Equations

A key feature of the Brownian Motion process is that its paths are (al-
most surely) nowhere-differentiable. This makes it difficult to incorporate

2This limit requires that we treat time and space unequally: since we divided the left-
hand side of (1) by ∆t and the right-hand side by (∆n)2, we must scale parabolically in
this limit, i.e. such that we maintain ∆t/(∆n)2 = 1
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Figure 2: Sample paths of the Brownian Motion process on the interval
[0, 10]. At time t, the process is Gaussian distributed with mean 0 and
standard deviation

√
t (plotted as thick line).

the Brownian process into a differential equation model, since we would in-
evitably start manipulating derivatives that don’t exist. To avoid this diffi-
culty, we always reinterpret a stochastic differential equation as an integral
equation. With a suitable definition of the integral, these models can be
handled rigorously to describe the dynamics of a system subject to randomly
evolving forces. In this paper, we deal only with first-order linear stochastic
differential equations driven by the Brownian Motion process. The simple
population growth model is an example.

In what follows, we will again sacrifice some rigor in order to better
develop our intuition. The simplest version of the population growth model
assumes that the instantaneous population growth is proportional to the
current population size, here denoted Xt:

dXt

dt
= αXt,
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where α is a constant determined by the birth and death rates of the popu-
lation.

In order to improve this model, we will assume that there are uncorre-
lated “noise” corrections to the proportionality constant α. In a discrete
model, increments of the random walk would work perfectly well. So in this
continuous model, we will naively use the derivative of Brownian Motion for
our noise:

dXt

dt
=

(
α + “

dBt

dt
”

)
Xt

= αXt + “
dBt

dt
”Xt.

Of course, the derivative dBt

dt
does not actually exist, so, formally, we multiply

through by dt
dXt = αXtdt+XtdBt (4)

and reinterpret as an integral equation∫ T

0

dXt =

∫ T

0

αXtdt+

∫ T

0

XtdBt

or

XT = X0 +

∫ T

0

αXtdt+

∫ T

0

XtdBt. (5)

Once we have a suitable interpretation for
∫ T

0
XtdBt then we will have

constructed a stochastic population growth model3.

3.3 Riemann-Stieltjes Integrals

The central concept in this research will be the stochastic integral. As demon-
strated above, we interpret a stochastic differential equation (4) as an integral

equation (5). But what does the term
∫ T

0
XtdBt in (5) mean? Norbert Wiener

defined this integral rigorously by constructing an appropriate measure on
the set of continuous functions on an interval. For the sake of numerical
integration, however, it is convenient to define the stochastic integral as a
Riemann-Stieltjes integral on individual paths of the Brownian process.

3This example follows Øksendal, Stochastic Differential Equations, 2010.
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Recall the Riemann definition of a definite integral, where we partition
the domain of our function, pick sample points t∗i in each interval of the
partition, evaluate our function at each sample point, and use these values
to construct the Riemann sum. Taking the limit of our Riemann sum as
the size of intervals in the partition approaches zero yields the value of the
Riemann integral–independent of what sample points we choose to evaluate
our function. ∫ T

0

f(t)dt = lim
∆t→0

∑
i

f(t∗i )∆ti.

We analogously define the Riemann-Stieltjes integral, where a function f
is integrated against another function g:

∫ T

0
f(t)dg(t). If our function g is

differentiable, we have the familiar∫ T

0

f(t)dg(t) =

∫ T

0

f(t)
dg

dt
(t)dt.

To allow for non-differentiable functions g, we define the Riemann-Stieltjes
integral as the limit of a Riemann sum:∫ T

0

f(t)dg(t) = lim
∆t→0

∑
i

f(t∗i ) [g(ti+1)− g(ti)] . (6)

This Riemann-Stieltjes integral of f against g can be thought of as an
integral where the values of f are weighted by the rate at which the values
of g are changing at each point. If g is smooth enough, we again do not need
to worry about the sample point t∗i where we evaluate f in each interval.

In the case of stochastic integrals, where the function g that we integrate
against is a Lévy process representing our noise, we will find that this choice
of sample point has significant consequences for the result of the integral.
This is because the paths of Brownian Motion aren’t smooth; in fact, they
are almost surely nowhere differentiable.

This means that each possible way of choosing a sample point t∗i from
each interval leads to a different definition of the stochastic integral. To keep
track of the possible choices of sampling point, we introduce the parameter
γ ∈ [0, 1] as the relative position of the chosen sample point within each
interval:

t∗i = (1− γ)ti + γti+1
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For example, choosing γ = 0 corresponds to defining the stochastic integral
by sampling each interval at the left-endpoint (i.e. the Itô integral); γ = 1/2
corresponds to the midpoint (Stratonovich integral); γ = 1 to the right-
endpoint.

3.4 Itô and Stratonovich Definitions

In practice, however, we only commonly use two definitions of the stochastic
integral: the Itô and Stratonovich integrals. The Itô integral is constructed
by evaluating the function f at the left-endpoint ti of each interval (γ = 0).
The Stratonovich integral is constructed by evaluating f at the midpoint
t̄i = ti+ti+1

2
of each interval (γ = 1/2). Each choice possesses a particularly

nice property when the integral is considered with respect to the Brownian
motion process: when we use Itô’s definition, the indefinite integral obtained
can be shown to possess the martingale property; when we use Stratonovich’s
definition, indefinite integrals can be calculated using the familiar calculus
rules for anti-differentiation.

As indicated above, there are formulas for converting between solutions
to the Itô and Stratonovich interpretations of the stochastic integral (due to
Wong and Zakai for the stochastic integral driven by Brownian motion4 and
extended by Kurtz, Pardoux, and Protter to stochastic integrals driven by a
particular class of semi-martingales5). We state this formula here for the case
of stochastic integrals driven by Brownian motion: denoting the Itô integral
of a function f(t, Bt) depending on time and the value of a Brownian motion
process by

∫
f(t, Bt)dBt and the Stratonovich integral by

∫
f(t, Bt)◦dBt, we

have6 ∫ T

0

f(t, Bt) ◦ dBt =
1

2

∫ T

0

∂f

∂Bt

(t, Bt)dt+

∫ T

0

f(t, Bt)dBt.

Noting that the far-left and far-right terms in this equation are simply the
Stratonovich and Itô integrals, respectively, we see that these two differ sim-
ply by the middle term, which is an ordinary integral whose integrand is the
partial derivative of the function f with respect to the second slot.

Kurtz et al. extend this result to integrals driven by a Lévy process,
though only for a particular class of integrands. While these formulas hold

4Wong, Zakai (1965).
5Kurtz, Pardoux, Protter (1992).
6Øksendal, Stochastic Differential Equations, 2010.
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only for a limited class of integrands and (so far as the author has been able
to find) only to convert between the γ = 0 and γ = 1/2 definitions of the
stochastic integral, finding a γ value particularly well-suited to numerical cal-
culation would spur great interest in developing formulas to convert between
definitions of the stochastic integral for all γ ∈ [0, 1].

4 Literature Review

The theory of stochastic differential equations driven by the Brownian motion
process has been extensively studied and is described in a number of text-
books, such as Bernt Øksendal’s Stochastic Differential Equations (2010).
A standard handbook for numerical approximation and simulation of SDEs
driven by the Brownian process is Peter Kloeden and Eckhard Platen’s Nu-
merical Solution of Stochastic Differential Equations (1992), which discusses
both approximation algorithms and order of convergence computations.

The motivation to move beyond the Brownian motion process and con-
sider Lévy processes is described in the article Lévy Processes in the Physical
Sciences (2001) by project advisor Wojbor Woyczyński. In this article, Woy-
czyński offers four examples of how Lévy α-stable distributions arise from first
principles in physical systems. The examples offered show how hitting times
of a Brownian motion particle follow a Lévy distribution (α = 1/2), how
particles emitted from a point source follow a Cauchy distribution (α = 1)
in the detection plane, and how the Holtsmark distribution (α = 3/2) arises
to describe the gravitational field generated by stars distributed uniformly
in space and to describe the size distribution of large polymerized molecules.
Further discussion of α-stable distributions arising from first-principles argu-
ments is found in Zolotarev’s article One-Dimensional Stable Distributions
(1986).

Standard reference on the properties of Lévy processes is Jean Bertoin’s
Lévy Processes (1996). David Appelbaum’s Lévy Processes and Stochastic
Calculus (2009) approaches the subject with a more physics-oriented mindset
and offers a more intuitive discussion of the Lévy process and stochastic
integrals driven by Lévy processes. A full development of the far more general
theory of integration with respect to an arbitrary semi-martingale is found in
Stanis law Kwapień and Wojbor Woyczyński’s Random Series and Stochastic
Integrals (2002).

An early survey of numerical treatment of Lévy processes is Aleksander
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Janicki and Aleksander Weron’s article Can One See α-Stable Variables and
Processes? (1994). This paper discusses extending some of the numerical
techniques outlined by Kloeden and Platen for processes driven by Brownian
motion to be applied to processes driven by Lévy processes.

The original result for converting between Itô and Stratonovich definitions
of the stochastic integral driven by Brownian motion is Eugene Wong and
Moshe Zakai’s article On the Convergence of Ordinary Integrals to Stochastic
Integrals (1965). Thomas Kurtz, Etienne Pardoux, and Philip Protter ex-
tend this result to apply to stochastic integrals driven by Lévy processes in
their article Stratonovich Stochastic Differential Equations Driven by Gen-
eral Semimartingales (1992).

5 Objectives and Methods

This project explores the alternative definitions of the stochastic integral
from the point of view of numerical computation. Because practical imple-
mentation of stochastic models always involves computer simulation, efficient
numerical computation of the stochastic integral is of great importance. Thus
the objective of this project is to probe for a definition that lends itself par-
ticularly well to numerical computation. That is, a choice of γ ∈ [0, 1] for
which the rate of convergence of the numerical approximation is highest.

We probe using a MATLAB script where one chooses an integrand and
the script performs numerical calculations of the stochastic integral for mul-
tiple values of γ. The script computes rate of convergence statistics for each
chosen definition of the stochastic integral and compares these.

5.1 Explanation of MATLAB Script

Figure 3 presents a schematic overview of the MATLAB script.
The user provides two pieces of input: the desired integrand (a function of

time and the Brownian Motion process) and the mesh fineness, i.e. how finely
to discretize the interval [0, T ] (in this project, we always chose T = 10).

Given this mesh fineness, a script produces 100 paths of the Brownian
process on the corresponding discretization of [0, T ]. Paths of the process
are simulated as follows: from the above form of the probability distribution
function (3) of Brownian Motion along with the Markov property, we see
that the increments of Brownian Motion of width ∆t are Gaussian distributed
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Figure 3: Schematic overview of MATLAB script. The user supplies both
the integrand and mesh fineness. Paths of the Brownian Motion process
are generated on this mesh and inputted to the numerical integrator, which
calculates the Riemann-Stieltjes sum in (6). These values of the integral are
then inputted to a script that computes the approximation error.

with mean 0 and standard deviation
√

∆t. So to simulate a path of Brownian
Motion over [0, T ] broken into 100 time points, we

1. Generate 100 random numbers, N
(

0,
√
T/100

)
distributed.

2. For each ti = i T
100

, compute the cumulative sum of the first i normally
distributed random numbers.

3. Set Bti equal to the above cumulative sum.

Based on the user’s chosen integrand, the numerical integrator script
then computes the integrand using the previously generated Brownian path.
For each path, the script computes the Riemenn-Stieltjes sum in (6). The
collection of these values for all simulated Brownian paths is the numerical
approximation to the stochastic integral.
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Finally, a third script computes the error in numerical approximation.
The error is calculated as mean-squared error. That is, for each simulated
path of the Brownian process, we calculate the square of the difference be-
tween the “actual” value of the integral and the approximated value, then
average over all simulated paths:

Error =
∑ (Actual− Approximate)2

Number of Paths
.

Of course, an exact “actual” value is not always available, just as closed-form
expressions of ordinary integrals do not always exist. So to make this script
applicable to an arbitrary integrand, the “actual” value of the integral is
taken to be the numerical approximation calculated on the finest mesh that
the computer can handle in a reasonable amount of time (usually 10,000 time
points).

6 Results and Analysis

For a chosen integrand, say
∫ 10

0
BtdBt, we run the above MATLAB script

and gather a plot of approximation error versus mesh fineness. These are
best represented with logarithmically scaled axes. See Figure 4 for examples
of these plots for nine definitions of the integral

∫ 10

0
BtdBt.

When we are lucky, the approximation error decreases linearly with mesh
fineness on a log-log scale, indicating that the actual relationship is expo-
nential decay. In these cases, we can fit a line to the approximation error
versus mesh fineness curves to compare their steepness. It is this steepness
that indicates which definition presents the greatest computational advan-
tage, since this indicates how quickly the approximation error dies off as we
increase the mesh fineness.

For easy comparison, we extract the slope of each best fit line and plot
these as a function of γ ∈ [0, 1] (see Figure 5). Since the slopes of these
lines are negative, the lowest value corresponds to the steepest slope and
thus to the best definition for computation with that particular integrand.
Figure 5 indicates that the Itô definition of the integral

∫ 10

0
BtdBt is the best

for computation, since the line of best fit for the approximation error versus
mesh fineness curve has the steepest slope.

In some sense, this provides a positive answer to our original question: is
there a choice of γ ∈ [0, 1] for which numerical approximations of the stochas-
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Figure 4: Approximation error versus mesh fineness for nine definitions of the
stochastic integral

∫ 10

0
BtdBt. Shown are the actual data (blue) and linear

fits (green). In most cases the linear fit lies directly on top of the data. This
linear relationship on a log-log plot implies that the approximation error
decays exponentially with increasing mesh fineness.
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Figure 5: Slope of best fit line to approximation error versus mesh fineness
curve plotted against chosen definition of the stochastic integral

∫ 10

0
BtdBt ,

i.e. choice of γ ∈ [0, 1]. Note that γ = 0, the Itô integral, has the steepest
slope, indicating that for this particular integrand, the Itô integral is the
most computationally efficient definition.

tic integral converge more quickly than for other values of γ? However, it is
not an entirely satisfying answer. The plots in Figures 4 and 5 indicate an
advantage for the Itô integral, but only for one particular integral:

∫ 10

0
BtdBt.

The most satisfying answer we could hope for would be the discovery
of some γ ∈ [0, 1] that provides a computational advantage for numerical
approximations with all integrands. However, the same analysis performed
in Figures 4 and 5 for an exponential integrand,

∫ 10

0
exp (Bt) dBt, indicates

that this is not the case. In Figure 6 we have approximation error versus
mesh fineness plots for the exponential integrand. These do not follow a
linear trend as well as the same plots for the linear integrand, but they are
close enough that the linear fit is reasonable. Figure 7 shows the slopes of the
best fit lines plotted against the sampling point γ. What we observe is that
the slope is now steepest for the right-endpoint definition of the integral–the
exact opposite of what we found for the linear integrand.

Thus we cannot choose a sampling point that is most efficient for compu-
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tation of an arbitrary stochastic integral, since we have seen that the linear
and exponential integrands are most efficiently approximated by different
choices of sampling point. The next best thing to hope for is to find a choice
of sampling point that is most efficient for computation with a particular class
of integrands, e.g. polynomial integrands. While examining the polynomial
integrands, however, we encounter a problem. Beyond a certain degree, the
approximation error versus mesh fineness plots can no longer be approxi-
mated by a linear fit on a log-log plot. Figure 8 illustrates this problem in
the case where the integrand is the 20th power of Brownian Motion. In each
case there is a much greater improvement in the error when increasing the
mesh fineness from 102 time points to 103 time points than is achieved when
increasing the mesh fineness from 10 to 102 time points. Thus we cannot
apply the linear fit to compare the steepness of these curves. In the ab-
sence of such a simple comparison, it is unclear how to systematically draw
conclusions about the computational efficiency of each choice of sampling
point.

7 Conclusion

In this project we have successfully written a MATLAB script for numerical
approximation of alternative definitions of the stochastic integrals defined by
choosing an arbitrary sampling point γ ∈ [0, 1] for the Riemann-Stieltjes sum.
This script tracks the approximation error of the calculation for a given mesh
fineness and compares the rate at which this error decreases with increasing
mesh fineness for different choices of sampling point.

The objective of the project was to explore whether there is a particular
choice of sampling point that would offer the best improvement in approx-
imation error as we increase mesh fineness. We demonstrate that such a
choice often exists for a particular stochastic integral (the examples pre-

sented in this report are the linear and exponential integrands,
∫ 10

0
BtdBt

and
∫ 10

0
exp (Bt) dBt). However, the results are inconsistent in the sense that

the choice of γ that is best for one integrand will not be the best choice for
all integrands, as the linear and exponential integrand examples illustrate.

We hope to find a class of integrands for which there is a single most
efficient choice of sampling point. An obvious first choice to examine would
be the polynomial integrands, i.e. finite sums of positive integer powers
of the Brownian Motion process. However, we have not yet successfully
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analyzed the polynomial integrands because for high degree polynomials, the
approximation error does not decrease linearly with the mesh fineness on a
log-log scale (see Figure 8). This does not preclude an analysis of polynomial
integrands on an individual basis, but it does complicate the task of finding a
systematic comparison of these integrands. A continuation of this work will
involve devising a comparison of the rates of convergence that does not rely
on using linear fits.

Another way to extend this work would be to introduce another mea-
sure of computational efficiency, namely computation time. In this project,
computational efficiency was measured only by the approximation error. Of
course, in applications where many of these computations must be performed
quickly (such as mathematical financial analysis), computation time is a great
concern. If one were to introduce this measure of efficiency, then it is likely
that the gains in accuracy from using a non-standard sampling point are
outweighed by the computational cost of simulating the Brownian Motion
process on the time points between those used to calculate the increments of
Brownian Motion—in this case Itô’s integral would save us from performing
these computations.

Finally, this project should be extended to integrals driven by more gen-
eral processes than the Brownian Motion process, such as α-stable Lévy
processes. These processes allow for models that incorporate random, dis-
continuous jumps and are therefore very popular for modeling. Their cal-
culus is even more subtle than stochastic calculus for stochastic differential
equations driven by Brownian Motion, so good numerical simulation is again
essential for stochastic integrals driven by Lévy processes. We are attempt-
ing to apply the script used in this project to stochastic integrals of paths of
a Lévy process, but have not developed any results so far.

This project was originally conceived as an exploration of the Itô and
Stratonovich definitions of the integral. When I first approached my advisor,
Professor Woyczyński, I wanted to understand why these two formulations
gave rise to different results. Moreover, I wanted to know which one was
“right.” As might be expected, such an ill-posed question has no answer;
there are settings where there are convincing arguments for using Itô’s for-
mulation and settings with equally convincing arguments for Stratonovich’s
interpretation.

So while I did not answer the almost philosophical question of Itô versus
Stratonovich, I did learn the value of computation. I was hesitant at first to
dirty my hands with “for” loops and random number generation, but I found
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that forcing myself to perform computations enhanced my understanding.
As I move forward into the study of more general stochastic processes, I now
have the tools to take the abstract and make it tangible. In a broad sense, the
study of stochastic processes is looking for patterns in the randomness of our
physical world in order to tame it. In simulating these processes, however,
we unpack their neat description and, with the push of a button, relinquish
our control over randomness.
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Figure 6: Approximation error versus mesh fineness for nine definitions of
the stochastic integral

∫ 10

0
exp (Bt) dBt. Shown are the actual data (blue)

and linear fits (green). For most definitions shown, the linear fit is a good
approximation.
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Figure 7: Slope of best fit line to approximation error versus mesh fine-
ness curve plotted against chosen definition of the stochastic integral∫ 10

0
exp (Bt) dBt , i.e. choice of γ ∈ [0, 1]. Whereas for a linear integrand,∫ 10

0
BtdBt, the Itô definition was best (cf. Figure 5), we see that in this case

the right-endpoint definition appears to be the most efficient.
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Figure 8: Approximation error versus mesh fineness for nine definitions of
the stochastic integral

∫ 10

0
exp (Bt) dBt. Shown are the actual data (blue)

and linear fits (green). For most definitions shown, the linear fit is a good
approximation.
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