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Abstract

We did theoretical analysis of time dependence in systems with a particle inci-

dent on a potential barrier with a maximum potential very close to the energy

of the particle. Based on numerical computer models from the 1960s, we hy-

pothesized a delay effect in which time spent under the potential increases

rapidly as the energy approaches the peak of the potential. To analyze this

effect, we calculated the Wigner time of an incident Gaussian wave packet

reflecting against various soluble potentials. Analysis showed such a delay

proportional to 1√
1−E for reflection from a step potential, which diverges at

the threshold energy. This delay seems to persist for all analysis of a tanh

potential. In the near future we additionally want to solve for square and

sech potentials, as well as a general smooth potential with the WKB approx-

imation. The results of this analysis could be relevant to any system with a

classical turning point.
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1 Introduction

In the 1960s, Judah Schwartz and his team at MIT did a simulation of a

tunneling particle on a primitive computer system. Specifically, he was sim-

ulating wave packets incident on square barriers of various potentials. Al-

though the wavefunctions of much lesser and much greater energies behaved

predictibly, reflecting or transmitting with negligable delay, as the energy ap-

proached the potential it started behaving differently. Part of the wavefun-

cion remained under the potential for long periods of time. When Schwartz

gave a talk on the subject, in attendance was Eugene Wigner, a giant in the

field of quantum tunneling. He found this effect intriguing. He has done

work on similar problems, including developing the Wigner time, a method

of following the peak of a wave packet which we are using now to measure

the travel time. Although Schwartz mentioned this holding behavior in a

1967 paper[1] on computer simulation, he never published anything specifi-

cally about it and the subject stagnated. Very recently, he gave another talk

at Tufts, and lamented that very little work had been done regarding this

strange effect. We have now explored this strange effect in greater detail,

specifically examining step and tanh potentials and beginning analysis on a

general smooth potential with the WKB approximation.
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Figure 1: Schwartz’ time-resolved movie of a wavefunction of energy equal
to the potential barrier. Note the piece of the wavefunction remaining under
the potential.
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2 Applications

This research could have some fairly important implications. Photons are

roughly analogous to wavefunctions, despite having two time derivatives in

their characteristic equation rather than one, and could therefore exhibit

an energy-dependent delay effect. A different medium is analogous to a

potential barrier. One could imagine an experimental setup in which an

incoming photon beam’s energy is varied, looking for a characteristic delay

dependent on index of refraction for a material. Similar photonic tunneling

time experiments have already been carried out[2], but have not examined

the threshold energy case.

These results should also be applicable to nuclear fragmentations and

collisions. Nuclear potentials have a clearly defined maximum, which nuclear

particles must overcome to interact. It might be the case that particles very

close to this energy would spend more time interacting, thus slowing down

that nuclear process. This experiment would most likely be more difficult

to set up, and would probably not be an ideal way to practically study this

effect.
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3 Methods and Results

3.1 The Step Potential

Using classical mechanics, calculating the reflection time of a particle of mass

m incident on a higher-energy step potential is quite simple. The particle’s

energy is simply E = 1
2
mv20, which can be rewritten v0 =

√
2E
m

. The reflection

can be treated as a simple elastic collision, with the particle travelling a

distance d to the potential and a distance d back with the same absolute

velocity. So 2d = v0τ and

τc,step =

√
2m

E
d (1)

Figure 2: A step potential with an incident classical particle

Finding the Wigner time for a potential is more difficult. The Wigner

time is the time it takes for the centroid of a Gaussian wave packet to return

to its original position. To find it, we must first find the scattering states by

solving the Schrödinger equation, then construct a Gaussian wavepacket out
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of them. Since they have well-defined time-dependent behavior, so will the

Gaussian. For the step potential and x < 0, these scattering states are

ψsc =
1√
2π
eipx +

1√
2π
e−ipxe−iδ(p) (2)

Where δ is a phase shift and p is the momentum. The incoming particle

can be represented by a moving Gaussian wavepacket of width σ and wave

number k:

ψ(x) = Ae−
x2

2σ eikx (3)

The momentum-space wavefunction will be the overlap of this with the scat-

tering states:

ψ(p) =

∫ ∞
−∞

ψ∗scψ(x) dx = σAe−
σ2

2
(p−k)2 (4)

Overlapping this with the scattering states, with added time dependence,

gives the time-dependent wavefunction:

ψ(x, t) =

∫ ∞
0

ψ(p)ψsce
−i ~

2p2

2m
t dp (5)

Solving for the difference in time between two instances of the wavepacket

being at the starting point gives the Wigner time. The solution has a form

proportional to the derivative of the phase shift with respect to the wave

number, and is

τq = −m
k

dδ

dk
(6)

τq,step =

√
2m

E
d+

~√
E(V0 − E)

(7)
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The quantum time delay is the classical delay time plus a quantum correc-

tion. As V0 approaches infinity, this agrees with the classical time calculation.

This makes sense, since for a larger barrier less and less of the wavefunction

becomes a decaying exponential under it. As E approaches V0, the quantum

correction becomes asymptotically large and thus the reflection time becomes

large. This is exactly the sort of behavior we are looking for, and this result

is therefore quite encouraging.

Figure 3: The quantum-corrected reflection time for a step potential
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3.2 The Hyperbolic Tangent Potential

Figure 4: A tanh potential

The potentials for which we’ve seen near-threshold time delay so far -

Schwartz’s square potential and the step potential - have had something in

common. They both have discontinuous derivatives, and we wanted to de-

termine whether the time delay effect was dependent on this fact. Therefore,

our next goal was to solve for a tanh potential, which behaves like a smooth

step: It approaches one value at −∞, and another at∞, but does not change

abruptly.

3.2.1 Classical Return Time

We began by solving for the classical time delay using conservation of energy.

Since the tanh function approaches, but never quite reaches, the peak energy,

we actually expected the classical result to diverge near threshold. For the

tanh analysis, we typically used the natural unit system in which V0 = ~ =
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m = 1. Our conservation of energy equation was

E =
1

2
v2(x) +

1

2
[1 + tanh(

x

l
)] (8)

Which we can solve to obtain v(x). Instead of a simple fraction like the

step potential, since the tanh potential varies over x, we need to instead use

an integral to find the return time.

τ = 2

∫ xf

−d

dx

v(x)
= 2

∫ xf

−d

dx√
2E − 1− tanh(x

l
)

(9)

When solved, this yields

τ = l

√
2

1− E
tan−1(

√
E − 1

2
[1 + tanh(x

l
)]

1− E
)+l

√
2

E
tanh−1(

√
E − 1

2
[1 + tanh(x

l
)]

E
)|xf−d

(10)

At threshold, xf = ∞ and thus E − 1
2
[1 + tanh(

xf
l

)] = 0, so the upper

limit of integration is 0. Assuming d
l

is large, meaning the incoming particle

starts at a region of low potential, we can use

tanh(x) ≈ 1− 2e−2x, tanh−1(1− δ) ≈ 1

2
log(

2

δ
) (11)

And the tan−1 term becomes π
2
. Applying these approximations, the

classical return time becomes

τc,tanh =

√
2

E
d+

l√
2

[log(4E) +
π√

1− E
] (12)
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3.2.2 Quantum Return Time: Small l

The quantum return time for the tanh potential is obtained in much the same

way as for the step, but due to the nature of the potential it was significantly

more difficult to solve for. We start with the Schrödinger equation in the

form

− ~2

2m

d2ψ

dx2
+
λ

2
[tanh(

x

l
) + 1]ψ = Eψ (13)

Choosing to use the natural unit system and simplifying:

1

2
[tanh(

x

l
) + 1] =

exp(2x
l

)

exp(2x
l

) + 1
(14)

Setting y = exp(2x
l

), the Schrödinger equation becomes

y2
d2ψ

dy2
+ y

dψ

dy
+
l2

2
[E − y

y + 1
]ψ = 0 (15)

Doing another replacement: z = 1
y+1
→ y = 1

z
− 1

d2ψ

dz2
+ [

1− 2z

z(1− z)
]
dψ

dz
+
l2

2
[
E − (1− z)

z2(1− z)2
]ψ = 0 (16)

Trying to reach hypergeometric form, substituting ψ = zα(1− z)βφ:

dψ

dz
= zα(1− z)β{α

z
− β

1− z
}φ (17)

d2ψ

dz2
= zα(1−z)β{d

2φ

dz2
+2(

α

z
− β

1− z
)
dφ

dz
+(
α(α− 1)

z2
− 2αβ

z(1− z)
+
β(β − 1)

(1− z)2
)φ}

Want to pick α and β such that the 1
z2

and 1
(1−z)2 terms vanish, since the

form of the hypergeometric equation we want does not include them. This
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yields

l2E

2
− l2

2
+ α2 = 0→ α = ±l

√
1− E

2
(18)

l2E

2
+ β2 = 0→ β = ±il

√
E

2

Choosing α = l
√

1−E
2

and β = il
√

E
2

, the differential equation reaches

hypergeometric form, which has the solution

φ(z) = 2F1((α+β), 1+(α+β); 1+2α; z)+z−2α 2F1(−(α+β), 1−(α+β); 1−2α; z)

(19)

Where 2F1 is an ordinary hypergeometric equation. Substituting back in

for ψ and x gives the scattering states:

ψsc =
Γ(1 + 2α)Γ(2β)

Γ(α + β)Γ(1 + α + β)
e−i(x−d)

√
2E +

Γ(1 + 2α)Γ(−2β)

Γ(α− β)Γ(1 + α− β)
ei(x−d)

√
2E

(20)

The (x − d) terms are due to the fact that calculations until now have

assumed a tanh potential centered around 0, when it should in fact be cen-

tered around d. This means that the reflection coefficient is, after some

simplification,

r =
(α− β)Γ(2β)Γ2(α− β)

(α + β)Γ(−2β)Γ2(α + β)
e−i2d

√
2E = e−iδ (21)

All of the math from the derivation of the Wigner time for the step poten-

tial still applies. In natural units, and changing the derivative to something

more usable,

τq = −m
k

dδ

dk
= − dδ

dE
(22)
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Now, we choose to assume a narrow tanh potential. This means that l,

and thus both α and β, are small and we can use a small argument approxi-

mation for the Γ functions. For x << 1, Γ(x) ≈ 1
x
, so

r ≈ −α + β

α− β
e−i2d

√
2E = e−iδ (23)

τq,small l =

√
2

E
d+

1√
E(1− E))

(24)

3.2.3 Large l

We also wanted to see how the return time would behave for a very wide

potential, so we also did this calculation for large l. This makes β large and

α arbitrary, rather than both being small as for small l. Under these con-

ditions, Γ(x) ≈
√

2πe−xxx−1/2. Since there is no transmission, the reflection

coefficient will have real magnitude 1, and can be reduced to only a phase.

In this regime, it becomes

r = ei4|β| log(2)ei
π
2 e−i2παe−i2d

√
2E (25)

→ δ(E) =
π

2
+ 2d
√

2E + 2πα− 4|β| log(2)

τq,large l =

√
2

E
d− l√

2
[
log(4)√

E
+

π√
1− E

] (26)

(The minus sign is probably a calculation error, as it doesn’t make phys-

ical sense and is inconsistent with other calculations. I’ll assume in analysis

that it should be positive)
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3.3 Discussion

Our results for the return time all share some intriguing common features.

Without fail, they include the classical return time for a step potential:
√

2
E
d.

This acts as a consistent baseline time. When we take into account quantum

corrections for the step(7), an extra correction is introduced of ~√
E(V0−E)

.

Since E is approaching 1, the first E in the denominator becomes irrelevant.

In natural units, therefore, the step correction becomes 1√
1−E . The quantum

correction for a narrow tanh potential(24) gives the exact same return time,

as it should: A tanh potential becomes a step potential in the limit l→ 0.

More interestingly, this same factor of 1√
1−E also appears in the classical

derivation of the tanh potential return time(12). We had known that the

classical time would diverge, but this result means that it diverges at the

same rate as our quantum delay effect. Further, the large l time(26) be-

comes identically equal to the classical time as it approaches threshold. This

suggests that a less abrupt change in potential has the effect of ‘weakening’

quantum corrections. Even so, the time delay effect we have been searching

for seems to be retained across all regimes.
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4 Next Steps

4.1 Square and sech Potentials

Figure 5: A square and sech potential

Although we have run out of time this year, our goal is a publication, and

to that end we still have a few more steps to accomplish. Primarily, we want

to see if potentials with a possibility of transmission exhibit the same delay

effect. The first step would be to analyze the one Schwartz used, a square

potential, analytically rather than numerically. This should not be overly

difficult, as the solution for its scattering states is very well understood, and

the classical return time would be the same as for a step. The sech potential

is to the square as the tanh is to the tanh: It is the smooth analogue. It will

most likely be significantly more difficult to analyze, on par with the tanh

potential.

4.2 The General Potential

We have the tools at our disposal to approximately solve for any smooth

potential, in the form of the WKB Approximation. We have done much of
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Figure 6: An arbitrary smooth potential

the preliminary analysis, but have not yet found a return time. By assuming

a negligable second derivative, WKB gives a solution of the form

ψ(x) ≈ C√
p(x)

e±
i
~
∫
p(x) dx, p(x) ≡

√
2m(E − V (x)) (27)

In textbook WKB, there are regions for which this solution does not

apply when the energy crosses the potential and p(x)→ 0. In those regions,

the procedure is to approximate the potential as linear and solve to produce

“joining formulae” in the form of Airy functions. However, this does not

apply to our case. We are dealing with near-threshold energies, so the first

term of the Taylor expansion would be zero rather than linear. Therefore

we instead approximated a negative quadratic potential, V (x) = −1
2
mωx2.

Solving the Schrödinger equation for this potential yields a solution of the

form

ψ(x) = Ae−
i
4
β2x2

1F1(1 + i
E

2~ω
,
1

2
,
i

2
β2x2) (28)
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This is a confluent hypergeometric function, and it agrees with the WKB

solution as x→ ±∞.

We want to complete analysis of the general potential before publication.

This will involve determining the extent of the region over which the WKB

solution does not apply, then matching that solution to the joining function.

Once we do this we should be able to calculate scattering states, reflection

and transmission coefficients, and finally the Wigner time, as with the step

and tanh. If it diverges, it will show a greater generality to the delay effect.

4.3 Other Things

Since we will be working with potentials that have transmission as well as

reflecion, it could help our analysis to examine energies approaching threshold

from greater than V0 rather than only less. This would allow us to determine

what sort of asymptote the threshold energy is, and could grant additional

insight into the exact nature of the time delay. While using these energies

slightly greater than V0, we would be interested in transmission time rather

than reflection.

We also might look into and try to calculate alternative methods of return

time calculation, especially ones proposed by Landauer.[3] He claims that the

peak of a Gaussian has no concrete physical meaning, and proposes several

alternatives. One of them, involving varying the top of a potential in a time-

dependent way, has a listed solution for a square potential which diverges at

the threshold.
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5 Conclusion

Our hypothesis that near-threshold tunneling is associated with a time delay

is looking strong. We first analytically identified this effect, which Schwartz

noticed in his numerical calculations, in the quantum return time for a step

potential. We found that it persisted in all regimes of a tanh potential,

including in classical and both narrow and wide quantum times. While we

still have things left to test, Schwartz’s original observations, the basis of

this project, present evidence that this effect should manifest in systems

with allowable transmission as well. It remains to be seen whether it also

applies to transmission time, or whether the effect remains for other methods

of measuring time, but we will try to figure this out in the near future. There

could be many important applications to this research, and I hope it proves

useful.
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