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Abstract
Regularization plays an important role in solving ill-posed problems by adding extra infor-
mation about the desired solution, such as sparsity.Many regularization terms usually involve
some vector norms. This paper proposes a novel regularization framework that uses the error
function to approximate the unit step function. It can be considered as a surrogate function
for the L0 norm. The asymptotic behavior of the error function with respect to its intrinsic
parameter indicates that the proposed regularization can approximate the standard L0, L1

norms as the parameter approaches to 0 and ∞, respectively. Statistically, it is also less
biased than the L1 approach. Incorporating the error function, we consider both constrained
and unconstrained formulations to reconstruct a sparse signal from an under-determined
linear system. Computationally, both problems can be solved via an iterative reweighted
L1 (IRL1) algorithm with guaranteed convergence. A large number of experimental results
demonstrate that the proposed approach outperforms the state-of-the-art methods in various
sparse recovery scenarios.
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1 Introduction

These days, “big data” is ubiquitous due to the developments and advancements in science
and technologies. On the other hand, one often faces “small data,” when technical or eco-
nomic restrictions limit the amount of data that can be collected and/or transmitted. For
example, when a patient undergoes the computed tomography (CT) scanning, the number of
measurements can not exceed the maximum safe radiation dosage.Mathematically speaking,
a small data problem corresponds to an under-determined (linear) system, where the number
of measurements is considerably smaller than the ambient dimension. In this case, reason-
able assumptions shall be taken into account and formulated as regularizations to obtain the
desired solution.

In data science, a signal of interest is often assumed to be sparse (i.e., having a few
nonzero elements) either by itself or after a linear transformation.One popular signal recovery
technique based on sparsity is compressed sensing (CS), coined by David Donoho [11]. CS
enables data compression to facilitate data storage and transmission, as only a small portion
of data, which are nonzero, is being processed. In order to find the sparsest signal, it is natural
to minimize the L0 norm1, i.e., the number of nonzero entries in a vector. Unfortunately, the
L0 minimization problem is NP-hard [24], as it involves combinatorial search that is time-
consuming, especially in high-dimensional spaces. One of themost popular approaches in CS
is to replace the L0 norm by the convex L1 norm, which often gives satisfactory results. This
L1 convex relaxation technique has been applied in many different fields such as geology
and geophysics [30], Fourier transform spectroscopy [23], and ultrasound imaging [26]. One
major tool for analyzing CS algorithms is the restricted isometry property (RIP) [6], which
provides a sufficient condition for the exact recovery of a sparse signal by minimizing the
L1 norm.

The L1 minimization in CS is closely related to the least absolute shrinkage and selection
operator (LASSO) [32] in statistical learning. Assume that the data is generated by a linear
regression model polluted by Gaussian noise, b = Ax+ ε, where each row of A is a sample
of feature vectors, and b, ε are the response and noise, respectively. In this setting, one aims
to find a sparse vector x consisting of model coefficients. It is a reasonable assumption since
only a few features contribute to the response. However, Fan and Li [13] pointed out that
LASSO (or L1) produces biased estimates for large coefficients. Note that there is no common
ground for various definitions and interpretations of biasedness. Here, we follow a sufficient
condition from [13] to characterize unbiasedness: y = f (x) is unbiased if its derivative
is zero for large magnitude values of x . In addition, unbiasedness can be characterized by
the closeness of the proximal operator to the straight line y = x when |x | increases. To
mitigate the estimation bias, Fan and Li [13] proposed a nonconvex regularization, called
smoothly clipped absolute deviation (SCAD). Later, many other nonconvex regularizations
have emerged in statistics, such as capped L1 (CL1) [31,44], transformed L1 (TL1) [22], and
minimax concave penalty (MCP) [41]. Some of these models have been adopted for sparse
signal recovery [21,42,43].

1 Note that ‖ · ‖0 is a pseudo-norm, but is often called as the L0 norm.
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Nonconvex regularization terms can be further categorized into two groups: smooth and
nonsmooth. In particular, CL1, SCAD, andMCP are nonsmooth. Specifically, their proximal
functions are not differentiable, which leads to numerical instability from the algorithmic
point of view. Transformed L1 is smooth except at zero, and its proximal function is also
smooth. However, it causes more bias than CL1, SCAD, and MCP, as its proximal operator
does not coincide with y = x for large values of |x |. We aim to propose a nonconvex
regularization, which is smooth and less biased compared to L1 and TL1; see Fig. 1 for
comparison among these regularization terms.

In this paper, we propose a novel nonconvex regularization based on the ERror Function
(ERF) to promote sparsity. It is motivated from a graph-based approach [3] to enforce a
bi-modal weight distribution when reconstructing a skeleton image. We discover that their
numerical scheme is equivalent to minimizing the error function via the iterative reweighted
L1 (IRL1) algorithm [7]. As a good approximation to the Heaviside step function (or the
unit step function), the error function can serve as a surrogate function for the L0 norm,
which has not been considered in the CS literature to the best of our knowledge. The major
contributions of this paper are three-fold:

(a) We propose a novel regularization based on the error function for sparse signal recovery
and establish its connections to the standard L0, L1 regularizations;

(b) We adapt the IRL1 algorithms to solve the proposed model in both constrained and
unconstrained formulations with guaranteed convergence;

(c) We conduct extensive experiments to demonstrate the superior performance of the
proposed approaches.

The rest of the paper is organized as follows. We review some existing models and related
algorithms for sparse recovery in Sect. 2. The proposed regularization is described in Sect. 3,
followed by numerical schemes in Sect. 4.We present experimental results in Sect. 5, showing
that the proposed approaches outperform the state-of-the-art methods in sparse recovery.
Finally, conclusions and future works are given in Sect. 6.

2 Preliminaries

Throughout the paper, we use bold uppercase letters to denotematrices, bold lowercase letters
to denote vectors, and lowercase letters to denote vector or matrix entries, e.g., a vector x
with its j-th component x j . The set of all n-dimensional real vectors is denoted by R

n , and
the set of all nonnegative vectors is denoted by R

n+ := [0,∞)n . The L p norm of a vector
x ∈ R

n is defined as ‖x‖p = (
∑n

j=1 |x j |p)1/p for 0 < p ≤ ∞. The sign function applied
to x ∈ R

n returns a vector, denoted by sign(x), whose j-th component is x j/|x j | if x j �= 0
and zero otherwise. Inequalities involving vectors are defined component-wise, e.g., x ≤ y
means that each component of x is less than or equal to the corresponding component of
y. We use � to denote the component-wise multiplication of two vectors. The set of all
m × n real matrices is denoted by R

m×n . The kernel of a matrix A ∈ R
m×n is defined as

ker(A) := {x ∈ R
n : Ax = 0}. AS is the submatrix with columns selected from the index

set S, xS is the subvector of x with components selected from the index set S, and xS is the
vector obtained by zeroing out the components of x in Sc – the complement of the index
set S.
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2.1 Sparsity-PromotingModels

There are a variety of regularizers that can approximate the L0 norm, including L1, L p with
0 < p < 1 [9,36,37], capped L1 [21,31,44], transformed L1 [22,42,43], L1-L2 [20,28,39],
and L1/L2 [29,35]. In this paper, we focus on developing a separable regularization, which
allows a component-wise implementation to enhance computational efficiency. Besides L1

and the pth power of L p with 0 < p < 1, there are other popular separable regularizations,
some of which are listed as follows: for any x ∈ R

n and a > 0, λ > 0, γ > 1,

– Capped L1 (CL1):

JCL1a (x) :=
n∑

j=1

min{|x j |, a};

– Transformed L1 (TL1):

JTL1a (x) :=
n∑

j=1

(a + 1)|x j |
a + |x j | ;

– Smoothly clipped absolute deviation (SCAD):

JSCADλ,γ (x) :=
n∑

j=1

�SCAD
λ,γ (x j )

with

�SCAD
λ,γ (x j ) =

⎧
⎪⎨

⎪⎩

λ|x j |, |x j | ≤ λ;
2γ λ|x j |−|x j |2−λ2

2(γ−1) , λ < |x j | ≤ γ λ;
(γ+1)λ2

2 , |x j | > γλ;
– Minimax concave penalty (MCP):

JMCP
λ,γ (x) :=

n∑

j=1

�MCP
λ,γ (x j )

with

�MCP
λ,γ (x j ) =

{
λ|x j | − |x j |2

2γ , |x j | ≤ γ λ;
1
2γ λ2, |x j | > γλ;

It is straightforward that the pth power of L p converges to L0 and L1 as p goes to 0 and
1, respectively. By letting a = 0 in TL1 and using the standard assumption of 0

0 = 0, JTL10
is equivalent to the L0 norm. On the other hand, we have

lim
a→∞ JTL1a (x) =

n∑

j=1

lim
a→∞

(1 + 1
a )|x j |

1 + 1
a |x j |

=
n∑

j=1

|x j | = ‖x‖1.

Therefore, JTL1a approaches to the L0 and L1 norms by letting a → 0 and ∞, respectively.
Both SCAD and MCP are proposed to correct the estimation bias for large coefficients

caused by the L1 approach. As �SCAD
λ,γ and �MCP

λ,γ become constant for |x | > γλ, both
SCAD and MCP estimates are unbiased. However, one major drawback of SCAD and MCP
is that there are two model parameters involved, which causes difficulties in the parameter
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selection. The parameter-free models include L1, L1-L2, and L1/L2, the last of which also
has a scale-invariant property to mimic the L0 norm.

2.2 Optimization Techniques

A fundamental problem in CS is to find a sparse vector subject to an under-determined linear
system,

min
x∈Rn

‖x‖0 s.t. Ax = b, (1)

where A ∈ R
m×n(m 	 n) is called a sensing matrix and b ∈ R

m denotes a measurement
vector. Candès et al. [7] proposed the following reweighted L1 minimization (IRL1),

{
wk

j = 1
|xkj |+ε

, for j = 1, . . . , n,

xk+1 = argminx∈X
∑n

j=1 wk
j |x j |,

(2)

where ε is a positive parameter for the sake of stability and X = {x : Ax = b} denotes the
feasible set. From the perspective of a majorization-minimization (MM) framework [19], the
iteration (2) is in fact to minimize the following problem

min
x∈X

n∑

j=1

log(|x j | + ε). (3)

The objective function in (3) is often called a log-sum penalty function, denoted by

J logε (x) :=
n∑

j=1

�
log
ε (|x j |) where �

log
ε (x) = log(x + ε).

Since �
log
ε is an increasing concave function on [0,+∞), we have

J logε (x) ≤ J logε (xk) + 〈∇ J logε (xk), |x| − |xk |〉.
Note note that | · | means to take the absolute value for each component of a vector. Instead
of directly minimizing J logε , the MM framework considers the following iteration scheme

xk+1 = argminx∈X J logε (xk) + 〈∇ J logε (xk), |x| − |xk |〉,
which is equivalent to (2).

The iterative reweighed algorithm is generalized in [25], where the authors considered a
certain class of nonsmooth and nonconvex functions of the form

min
x∈X F1(x) + F2(G(x)), (4)

with a convex function F1, a coordinate-wise convex function G, a concave function F2, and
a feasible set X ⊆ R

n . The iterative reweighted algorithm can be expressed as
{
wk ∈ ∂F2(y) with y = G(xk)
xk+1 = argminx∈X F1(x) + 〈wk,G(x)〉, (5)

where ∂F2 denotes the subdifferential of F2. If F1 = 0, F2(y) = ∑n
j=1 �

log
ε (y j ), and

G(x) = |x|, then (5) reduces to (2).
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3 Proposed Regularization

We propose the following novel regularization to promote sparsity:

JERFσ (x) :=
n∑

j=1

�ERF
σ (|x j |) with �ERF

σ (x) =
∫ x

0
e−τ 2/σ 2

dτ, (6)

with σ > 0. Note that the standard error function is defined as

erf(x) = 2√
π

∫ x

0
e−τ 2dτ,

and hence �ERF
σ is a scaled error function in that

�ERF
σ (x) = σ

∫ x
σ

0
e−τ 2dτ = σ

√
π

2
erf

( x

σ

)
. (7)

We refer our model (6) as the “ERF” regularization. In what follows, we omit the superscript
“ERF” in Jσ and �σ when the context clearly refers to the proposed regularization.

3.1 Properties

We list some useful properties about �σ and Jσ , especially the asymptotical behaviors of Jσ
as characterized in Theorem 1.

(P1) The derivative of �σ at x is given by

d

dx
�σ (x) = exp(− x2

σ 2 ). (8)

(P2) The upper/lower bounds of �σ are given by

c
√

1 − e−ax2 ≤ �σ (x) ≤ c
√

1 − e−bx2 , ∀ x ∈ R, (9)

where a = 1/σ 2, b = π/4σ 2, and c = σ
√

π

2 based on the lower and upper bounds of
the standard error function [10].

(P3) Jσ is concave on Rn+, i.e., for any t ∈ [0, 1] and any x, y ∈ R
n+

Jσ (tx + (1 − t)y) ≥ t Jσ (x) + (1 − t)Jσ (y). (10)

(P4) Jσ is subadditive or satisfies the triangle inequality on Rn , i.e.,

Jσ (x + y) ≤ Jσ (x) + Jσ (y), ∀ x, y ∈ R
n . (11)

In addition, if x, y ∈ R
n have disjoint supports, then

Jσ (x + y) = Jσ (x) + Jσ (y).

The proofs of (P3)-(P4) can be found in the Appendix.

Theorem 1 For any nonzero vector x ∈ R
n, we have

(a) Jσ (x) → ‖x‖1, as σ → +∞;

(b) Jσ (x)/σ →
√

π

2 ‖x‖0, as σ → 0+.
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Fig. 1 The objective functions of various sparsity promoting models, all of which are scaled to attain the point
(1, 1). The proposed ERF gives the best approximation to the L0 norm for a small value of σ and is also less
“biased” compared to other models

Proof Since Jσ (·) is separable with respect to each component of x, it suffices to discuss the
limits for a scalar. For any component x j �= 0, we let t = |x j |/σ which approaches zero as
σ → +∞ and hence we have

lim
σ→+∞

�σ (|x j |)
|x j | = lim

t→0

∫ t
0 e

−τ 2dτ

t
= 1. (12)

The last equality is obtained by applying the l’Hospital’s Rule. When x j = 0, it is obvious
that �σ (|x j |) = 0, and thereby Jσ (x) → ‖x‖1 as σ → +∞.

On the other hand, we have �σ (0) = 0. When x j �= 0, we have

lim
σ→0+

�σ (|x j |)
σ

=
√

π

2
. (13)

Therefore, Jσ (x)/σ →
√

π

2 ‖x‖0 as σ → 0+. ��

Figure 1 shows the objective functions of various sparsity promoting models. We scale
them to attain the point (1, 1) in order to have a better visual comparison. It indicates that
the proposed ERF gives the best approximation to the L0 norm for a small value of σ and is
also less “biased” compared to other models.

3.2 Proximal Operator

Given a function f : Rn → R ∪ {+∞}, the proximal operator [27] prox f
μ : Rn → R

n of f
with a parameter μ > 0 is defined by

prox f
μ(v) = arg minx

(
μ f (x) + 1

2
‖x − v‖22

)
. (14)
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If f is the L1 norm, then the corresponding proximal operator is the soft shrinkage operator,
defined by

shrinkμ(v) =
⎧
⎨

⎩

v − μ, v > μ,

0, |v| ≤ μ,

v + μ, v < −μ.

Due to its component-wise calculation, this operator is a key to make many L1 minimization
algorithms efficient. The proximal operator of the L0 norm with parameter μ is given by the
hard thresholding

threshμ(v) =
{
v, |v| > μ,

0, |v| ≤ μ.

As for TL1, its proximal operator [42] can be expressed as

proxTL1μ (v) =
{
sign(v)

[
2
3 (a + |v|) cos( ϕ(v)

3 ) − 2a
3 + |v|

3

]
, v > μ,

0, |v| ≤ μ,

where ϕ(v) = arccos
(
1 − 27μa(a+1)

2(a+|v|3)
)
.

Next we derive the proximal operator of the proposed ERF model, which is defined by

proxERFμ (v) = arg minx
(
μJERFσ (x) + 1

2
‖x − v‖22

)
. (15)

Note that there is no closed-form solution for this problem. We can find the solution via the
Newton’s method. In particular, the optimality condition of (15) reads as

v ∈ μ∂ JERFσ (x) + x = μ exp

(

− x2

σ 2

)

� ∂ |x| + x.

When |vi | ≤ μ, we have xi = 0. Otherwise the optimality condition becomes

vi = μ exp

(

− x2i
σ 2

)

sign(vi ) + xi ,

which can be found by the Newton’s method.
Weplot the proximal operators for L0, L1, TL1witha = 0.1, 10, andERFwithσ = 0.1, 2

in Fig. 2. Both TL1 and ERF provide the asymptotic approximations to L0 and L1 when
varying their intrinsic parameter. The bias issue can be illustrated by whether the proximal
operator approaches the line y = x when the magnitude of x increases. In this sense, the
plots indicate that ERF causes less bias than L1 and TL1.

3.3 Exact Recovery Guarantee

Based on the subadditive property, we adopt a generalized null space property (gNSP) [34] to
prove that the proposed ERF model is guaranteed to exactly find the desired sparse solution.

Definition 1 A matrix A ∈ R
m×n is said to satisfy a generalized null space property (gNSP)

relative to a function J : Rn → [0,∞) and S ⊆ {1, · · · , n} if
J (vS) < J (vSc ) (16)

for all v ∈ ker(A)\{0}. Here vS and vSc are obtained by zeroing out the components of v
indexed by Sc and S, respectively. The matrix A is said to satisfy gNSP of order s ≤ n
relative to J if it satisfies gNSP relative to J and any set S ⊆ {1, · · · , n} with |S| ≤ s.
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Fig. 2 Proximal operators of various sparsity promoting models with μ = 1

If we replace J in (16) by the L1 norm, then Definition 1 becomes the standard NSP for
the exact L1 recovery [12].We establish in Theorem 3 an exact recovery of the proposed ERF
regularization based on gNSP. To make the paper self-contained, we include a brief proof,
which follows the NSP discussion of the L1 norm [15, Theorem 4.4]. In addition, since the
proposed Jσ is separable onRn , concave onRn+, and Jσ (0) = 0, Theorem 3 can be obtained
in a similar way as [34, Theorem 4.3].

Theorem 2 Given a matrix A ∈ R
m×n and σ > 0, every vector x ∈ R

n supported on a set
S ⊆ {1, · · · , n} is the unique solution of the problem

min
z

Jσ (z) s.t. Az = b,

if and only if A satisfies gNSP relative to Jσ and S.

Proof Given a fixed index set S, let us first assume that every vector x ∈ R
n supported on S

is the unique minimizer of minz Jσ (z) subject toAz = Ax. Thus for any v ∈ ker(A)\{0}, the
vector vS is the unique minimizer of Jσ (z) subject to Az = AvS . Since Av = 0 with v �= 0,
we have

A(−vSc ) = AvS .

Since −vSc �= vS , we can get the inequality (16), which establishes gNSP relative to Jσ and
S.

Conversely, we assume that (16) holds for Jσ and S. For x ∈ R
n supported on S and

a vector z ∈ R
n with z �= x and Az = Ax, we have supp(x − zS) = S. Then the vector

v = x − z ∈ ker(A)\{0} satisfies that vS = x − zS . Furthermore, due to the subadditive
property, we obtain

Jσ (x) ≤ Jσ (x − zS) + Jσ (zS) = Jσ (vS) + Jσ (zS)

< Jσ (vSc ) + Jσ (zS) = Jσ (−zSc ) + Jσ (zS)
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= Jσ (zSc ) + Jσ (zS) = Jσ (z),

which implies that x is the unique minimizer of Jσ (z) subject to Az = Ax. ��
Byvarying the support sets S, we can get the following theorem for necessary and sufficient

conditions of the exact sparse recovery.

Theorem 3 Given a matrixA ∈ R
m×n and σ > 0, every s-sparse vector x ∈ R

n is the unique
solution of the problem

min
z

Jσ (z) s.t. Az = b,

if and only if A satisfies gNSP of order s relative to Jσ .

It is NP-hard to determine whether a matrix satisfies NSP or not [33]. However, the NP-
hardness of gNSP for a non-L1 regularization still remains an open question. On the other
hand, if we relax “every s-sparse vector,” then gNSP is no longer necessary in Theorem 3 for
exact sparse recovery.

4 Algorithms

We follow the reweighted L1 approach in [7] to minimize the proposed regularization Jσ .
We shall discuss two optimization formulations: constrained and unconstrained, separately.

4.1 Constrained Formulation

Consider an ERF-regularized minimization problem with a linear constraint

min
x∈Rn

Jσ (x) s.t. Ax = b. (17)

According to the general iterative reweighted framework (5), the objective function in (17)
can be expressed as Jσ (x) = F2(G(x)), where F2(y) = ∑n

j=1 �σ (y j ) and G(x) = |x|. By
calculating the derivative of the error function (8), we obtain the following iterative scheme

⎧
⎨

⎩

wk
j = exp

(

−
( xkj

σ

)2
)

, for j = 1, . . . , n,

xk+1 = argminx∈X
∑n

j=1 wk
j |x j |,

(18)

where X is the same feasible set as in (2). The x-subproblem in (18) can be cast as a linear
programming problem. We use the commercial Gurobi solver (https://www.gurobi.com/)
to solve this subproblem. Other popular methods include alternating direction method of
multipliers (ADMM) [4,16,17] and primal-dual algorithms [8,38]. The convergence of the
scheme (18) is presented in Theorem 4.

Theorem 4 The sequence {xk}∞k=1 generated by the reweighted L1 iteration (18) is bounded.
It has a convergent subsequence and any accumulation point of {xk}∞k=1 is a stationary point
of (17). In addition, we have

min
k=1,··· ,K

n∑

j=1

[
�σ (|xkj |) − �σ (|xk+1

j |) − wk
j

(|xkj | − |xk+1
j |)

]
≤ Jσ (x1)

K
.
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Proof We start by showing that the sequence {xk}∞k=1 is bounded. In particular, we aim to
show that the sequence of {xk}∞k=1 is in the convex hull constructed by the set V = {x :
∃ S such that AS has full column rank, ASxS = b, xSc = 0}. Since the number of submatri-
ces of A with full column rank is finite, V is bounded, leading to boundedness of the convex
hull and the sequence {xk}.

Let x̄ ∈ R
n be an optimal solution for the x-subproblem in (18) and S the set of corre-

sponding indices of nonzero components in x̄. Given an arbitrary set of nonnegative weights,
denoted by w j , we consider the following problem restricted to the index set S,

min
x∈Rn

∑

j∈S
w j |x j |, s.t. ASxS = b, xSc = 0. (19)

The optimality condition of (19) is

[
M 0
0 A�

S

] [
x̄
y

]

:=
⎡

⎣
AS 0 0
0 I 0
0 0 A�

S

⎤

⎦

⎡

⎣
x̄S
x̄Sc
y

⎤

⎦ =
⎡

⎣
b
0
ŵS

⎤

⎦ , (20)

where y is the dual variable and ŵS = wS � sign(x̄S). If ker(M) �= {0}, then we choose a
nonzero vector �x from the kernel space ofM (note (�x)Sc = 0). Thus, from the optimality
condition (20), we can find t1 < 0 and t2 > 0 such that x̄+ t � x is also an optimal solution
for any t ∈ [t1, t2]. Both t1 and t2 exist; otherwise the optimal objective value will be +∞.
Furthermore,we can choose t1 (and t2) such that at least one component of x̂S := x̄S+t1(�x)S
(and x̆S := x̄S + t2(�x)S) is zero. It implies that x̄ is a weighted average of x̆ and x̂, both
of which have fewer nonzero components. Then we can apply the same technique on x̂ and
x̆ until we end up with solutions such that ker(M) = {0}. Therefore, we have x̄ is within
the convex hull constructed by some solutions of ASxS = b and xSc = 0 with full column
rank sub-matrix AS . Since the number of such submatrices is finite, the whole sequence is
bounded.

Now that {xk}∞k=1 is bounded, then the Bolzano–Weierstrass Theorem guarantees the
existence of a convergent subsequence, denoted by {xnk }∞k=1. Assume that it converges to x∗.
Since xnk → x∗ and Axnk = b, we have Ax∗ = b.

Due to the x-subproblem given in (18), it is straightforward that

n∑

j=1

wk
j |xk+1

j | ≤
n∑

j=1

wk
j |xkj |.

As a result, we have the following inequality

Jσ (xk) − Jσ (xk+1) ≥
n∑

j=1

[
�σ (|xkj |) − �σ (|xk+1

j |)] −
n∑

j=1

wk
j

(|xkj | − |xk+1
j |)

=
n∑

j=1

[
�σ (|xkj |) − �σ (|xk+1

j |) − wk
j

(|xkj | − |xk+1
j |)

]
≥ 0,

as �σ (·) is a concave function and wk
j is the derivative of �σ evaluated at |xki |. Therefore,

we can obtain that

min
k=1,··· ,K

n∑

j=1

[
�σ (|xkj |) − �σ (|xk+1

j |) − wk
j

(|xkj | − |xk+1
j |)

]
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≤ 1

K

K∑

k=1

n∑

j=1

[
�σ (|xkj |) − �σ (|xk+1

j |) − wk
j

(|xkj | − |xk+1
j |)

]
≤ Jσ (x1)

K
.

In addition, we have |xk | − |xk+1| → 0. When k is large enough, we have xk − xk+1 → 0;
otherwise Jσ ((xk + xk+1)/2) < Jσ (xk+1). Therefore, xnk+1 converges to x∗. According to
the optimality condition of (18), we have pnk+1

j ∈ ∂|xnk+1
j | and wnk+1 � pnk+1 is in the

range ofA�. Since the sequence {pnk+1
j } is bounded by±1, it has a convergent subsequence.

Without loss of generality, we assume that the sequence {pnk+1
j } itself converges. Therefore,

we have

exp

(

−
( x∗

j

σ

)2
)

p∗
j = lim

k→∞ w
nk
j pnk+1

j ,

which is in the range of A� and p∗
j ∈ ∂|x∗

j |. These relationships show that x∗ is a stationary
point of (17). ��

4.2 Unconstrained Formulation

In the noisy case, we consider an unconstrained problem of the form

min
x∈Rn

λJσ (x) + 1

2
‖Ax − b‖22, (21)

with a positive parameter λ. The reweighted L1 algorithm requires to solve the following
subproblem:

xk+1 = argminx∈Rn λ

n∑

j=1

wk
j |x j | + 1

2
‖Ax − b‖22, (22)

where the weight vector wk is defined in the same way as in (18). Exactly solving the
subproblem (22) is impractical due to the lack of closed-form solutions. In practice, we run
several iterations of ADMM to estimate the solution to this subproblem. We introduce an
auxiliary variable y and split the objective function as

min
x,y∈Rn

λ

n∑

j=1

w j |x j | + 1

2
‖Ay − b‖22 s.t. x = y. (23)

We omit the (outer) iteration index k when the context is clear. The corresponding augmented
Lagrangian can be expressed by

L(x, y;u) := λ

n∑

j=1

w j |x j | + 1

2
‖Ay − b‖22 + δ

2
‖x − y + u‖22, (24)

where u is the dual variable and δ is a positive parameter. The ADMM algorithm involves
the following steps:

⎧
⎨

⎩

xl+1 = argminx L(x, yl;ul),
yl+1 = arg miny L(xl+1, y;ul),
ul+1 = ul + xl+1 − yl+1,

(25)
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where the inner iteration is indexedby l.There are closed-formsolutions for both subproblems
of x and y given by

xl+1 = shrink(yl − ul ,
λ

δ
w) := sign(yl − ul) � max

(|yl − ul | − λ

δ
w, 0

)
,

yl+1 = (A�A + δId)−1(A�b + δxl+1 + δul),

where Id denotes the identity matrix. The overall algorithm for solving the unconstrained
ERF-regularized model is summarized in Algorithm 1.

Algorithm 1 The iterative reweighted L1 algorithm for solving the unconstrained ERF-
regularized model (21).

1: Input: A ∈ R
m×n , b ∈ R

m , σ, λ, δ > 0, and MaxOuter/MaxInner.
2: Initialization: k = 1 and solve for the L1 minimization to get x1.
3: while k < MaxOuter or other stopping criteria do

4: wk = exp{−( x
k

σ )2}
5: l = 1, yl = xk , ul = 0.
6: while l < MaxInner or other stopping criteria do
7: xl+1 = shrink(yl − ul ,

λ
δ w

k ).

8: yl+1 = (A�A + δ Id )−1(A�b + δx + δu).

9: ul+1 = ul + xl+1 − yl+1.
10: l ← l + 1.
11: end while
12: xk+1 = xl , k ← k + 1.
13: end while
14: return xk

For the convergence, we show in Lemma 1 that {xk+1} is uniformly bounded when (22)
is solved exactly. When it is solved inexactly, we shall assume that {xk+1} is also uniformly
bounded and satisfies

〈λwk � pk+1 + A�(Axk+1 − b), xk − xk+1〉 ≥ −‖A(xk − xk+1)‖22/4, (26)

with pk+1 ∈ ∂‖xk+1‖1. This is a reasonable assumption because we have 0 > −‖A(xk −
xk+1)‖22/2 with the exact solution of (22).

Lemma 1 For any {wk
j }nj=1, solutions of (22) are uniformly bounded.

Proof Let x̄ be a solution for the x-subproblem in (22) and S the set of corresponding indices
of nonzero components in x̄. We consider the following problem restricted to the index set
S,

min
x

λ
∑

j∈S
w j |x j | + 1

2
‖ASxS − b‖22, s.t. xSc = 0, (27)

of which x̄ is the optimal solution. The optimality condition is

Mx :=
[
A�

S AS 0
0 I

] [
x̄S
x̄Sc

]

=
[
A�

S b − λŵS

0

]

, (28)

where ŵS = (w � sign(x̄))S . Then using the same technique in the proof of Theo-
rem 4, we can show that {xk}∞k=1 is within a convex hull constructed by {x : ∃ S and ŵ ∈
(0, 1]n such that xS = (A�

S AS)
−1(A�

S b−λŵS)}. This set is bounded, so the optimal solution
x̄ is also bounded. ��
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Theorem 5 If the subproblem (22) is solved in a way that {xk}∞k=1 is uniformly bounded and
satisfies (26) for all k. Then {xk}∞k=1 generated byAlgorithm 1 has a convergent subsequence,
and any accumulation point of {xk}∞k=1 is a stationary point of (21). In addition, we have

min
k=1,··· ,K

n∑

j=1

[
�σ (|xkj |) − �σ (|xk+1

j |) − wk
j

(|xkj | − |xk+1
j |)

]

≤ Jσ (x1) + 1
2λ‖Ax1 − b‖22
K

. (29)

Proof Because {xk}∞k=1 is bounded, there exists a subsequence {xnk }∞k=1 which converges to
x∗. It follows from (26) that

1

2
‖Axk − b‖22 − 1

2
‖Axk+1 − b‖22

= 1

2
‖Axk − Axk+1‖22 + 〈xk − xk+1,A�(Axk+1 − b)〉

≥ −λ

n∑

j=1

〈xkj − xk+1
j , wk

j p
k+1
j 〉 + 1

4
‖Axk − Axk+1‖22

≥ −λ

n∑

j=1

wk
j (|xkj | − |xk+1

j |) + 1

4
‖Axk − Axk+1‖22.

We further obtain that
(

λJσ (xk) + 1

2
‖Axk − b‖22

)

−
(

λJσ (xk+1) + 1

2
‖Axk+1 − b‖22

)

= λ

n∑

j=1

[
�σ (|xkj |) − �σ (|xk+1

j |) − wk
j (|xkj | − |xk+1

j |)
]

+ 1

4
‖Axk − Axk+1‖22 ≥ 0,

which yields the convergence rate (29). In addition, we have |xk | − |xk+1| → 0 and Axk −
Axk+1 → 0 as k → ∞. Then we get xk − xk+1 → 0; otherwise (xk + xk+1)/2 has a smaller
function value than xk+1 when k is larger. Therefore, we have xnk+1 → x∗ as k → ∞. Since
the sequence {pnk+1

j } is bounded by ±1, it has a convergent subsequence. Without loss of

generality, we assume that {pnk+1
j } itself converges. Thus

0 = lim
k→∞ λw

nk
j pnk+1

j + A�
j (Axnk+1 − b)

= λe− (x∗j )2
σ2 p∗

j + A�
j (Ax∗ − b),

where p∗
j ∈ ∂|x∗

j |. That is, x∗ is a stationary point of (21). ��

5 Experiments

In this section, we demonstrate the performance of the proposed algorithms in comparison to
the state-of-the-art methods in sparse signal recovery. All the numerical experiments are con-
ducted on a Windows desktop with CPU (Intel i7-6700, 3.19GHz) and MATLAB (R2019a).
The codes, including test data for the experiments, will be available when the paper is pub-
lished.
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5.1 Noise-Free Case

We focus on one type of sparse signal recovery problems that involves highly coherent
matrices. The coherence of a matrix A = [a1, . . . , an] is defined as

μ(A) := max
i �= j

|a�
i a j |

‖ai‖2‖a j‖2 . (30)

By the Cauchy-Schwarz inequality, it is straightforward that 0 ≤ μ(A) ≤ 1. If the coherence
of a matrix is close to one, then the matrix is said to be highly coherent, where the standard
L1 model does not work well.

Following theworks of [14,20,40], we consider an over-sampled discrete cosine transform
(DCT), defined as A = [a1, . . . , an] ∈ R

m×n with

a j := 1√
m

cos

(
2π jw
F

)

, j = 1, · · · , n, (31)

wherew is a randomvector uniformly distributed in [0, 1]m and F ∈ R is a positive parameter
to control the coherence so that a larger value of F yields amore coherent matrix. Throughout
the experiments, we consider over-sampled DCT matrices of size 64 × 1024. The ground
truth x ∈ R

n is simulated as an s-sparse signal, where s is the number of nonzero entries. As
suggested in [14], we require a minimum separation of 2F in the support of x. The values of
nonzero elements follow the Gaussian distribution, i.e., xis ∼ N (0, 1), i = 1, 2, . . . , s.

We evaluate sparse signal recovery performance in terms of success rate, defined as the
number of successful trials over the total number of trials, which is 100 for all the experiments.
A success is declared if the relative error of the reconstructed solution x∗ to the ground truth
x is less than 10−3, i.e., ‖x∗ − x‖2/‖x‖2 ≤ 10−3.

Figure 3 shows the performance of the ERF regularizationwith respect to different choices
of σ , which numerically demonstrates that the proposed regularization approaches to the L1

norm for a large value of σ. We observe that the smaller the coherence is, the smaller the
value of σ is, which serves as the practical guide for the parameter selection.

Following from Fig. 3, we choose σ = 0.1, 0.5, 0.5, 1 for F = 1, 5, 10, 20, respectively,
and compare the sparse recovery performance among the state-of-the-art methods in Fig. 4.
The competingmethods are labeled as L0 (IRL1 [7]), L p , TL1, and L1-L2 [20,40].We choose
L1/2 as a representative regularization in the L p family [36,37], and a = 1 as recommended
in [43]. We observe that the proposed approach is always the best or at least the second best
under all coherence and sparsity levels.

5.2 Super-Resolution

We also examine the case of super-resolution, in which a coherent sensing matrix is involved.
A mathematical model for super-resolution can be expressed as

bk = 1√
N

N−1∑

t=0

xt e
−i2πkt/N , |k| ≤ fc, (32)

where i is the imaginary unit, x ∈ R
N is a vector to be recovered and b ∈ C

n consists of the
given low frequencymeasurements with n = 2 fc+1 < N . This is related to super-resolution
in the sense that the underlying signal x is defined on a fine grid with spacing 1/N , while the
frequency data of length n implies that one can only expect to recover the signal on a coarser
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Fig. 3 The performance of the ERF regularization (in terms of success rate) with respect to the choice of σ

grid with spacing 1/n. For simplicity, we use matrix notation to rewrite (32) as b = SnFx,
where Sn is a sampling matrix that indicates what frequency is collected, F is the Fourier
transform matrix, and we denote Fn = SnF . The frequency cutoff induces a resolution limit
inversely proportional to fc; below, we set λc = 1/ fc, which is referred to as the Rayleigh
length (a classical resolution limit of hardware [18]).

We are interested in reconstructing point sources, i.e., x = ∑
t j∈T c jδt j , where δτ is a

Diracmeasure at τ , spikes of x are located at t j ’s belonging to a set T , and c j ’s are coefficients.
Following the work of [5], the sparse spikes are required to be sufficiently separated; please
refer to Definition 2 and Theorem 6.

Definition 2 (Minimum Separation [5]) Let T be the circle obtained by identifying the end-
points on [0, 1] andTd the d-dimensional torus. For a family of points T ⊂ T

d , the minimum
separation is defined as the closest wrap-around distance between any two elements from T ,

MS := �(T ) := inf
(t,t ′)∈T :t �=t ′

|t − t ′|, (33)

where |t − t ′| is the L∞ distance (maximum deviation along any coordinate axis).

Theorem 6 [5, Corollary 1.4] Let T = {t j } be the support of x. If the minimum distance
obeys

�(T ) ≥ 2λcN , (34)
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Fig. 4 The comparison with the state-of-the art methods for sparse signal recovery (in terms of success rate)

then x is the unique solution to the L1 minimization problem:

min ‖x‖1 s.t. Fnx = b. (35)

If x is real-valued, then the minimum gap can be lowered to 1.87λcN .

We are interested in the constant in front of λcN in (34), referred to asminimum separation
factor (MSF). Theorem 6 indicates that MSF≥ 2 guarantees exact recovery of L1 minimiza-
tion. We want to analyze how different sparse recovery algorithms behave with respect to
MSF. For this purpose, we consider a sparse signal (ground truth) xg of dimension 1000 with
MS=20.We vary fc from31 to 60, thusMSF:= �(T )· fc/N :=MS· fc/N=0.62 : 0.02 : 1.2.
Denote x∗ as the reconstructed signal using any of the methods including L1 via SDP [5],
constrained L1-L2 minimization via DCA [21], and the proposed ERF model via IRL1. We
consider 100 random realizations of the same setting to compute the success rate. Figure 5
shows great advantages of the nonconvex approaches L1-L2 and ERF over the convex L1

approach, while the proposed ERF model is slightly better than L1-L2.

5.3 Noisy Case

We provide a series of simulations to demonstrate sparse recovery with noise, following
an experimental setup in [36]. We consider a signal x of length n = 512 with s = 130
nonzero elements. We try to recover it fromm measurements (denoted by b) determined by a
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Fig. 5 Success rates (%) of fixed MS= 20 with respect to MSF for the ambient dimension N = 1000

Gaussian randommatrixA, i.e., a matrix whose columns are normalized with zero-mean and
unit Euclidean norm, and Gaussian noise with zero mean and standard deviation η = 0.1.
Taking noise into consideration,we use themean-square-error (MSE) to quantify the recovery
performance. If the support of the ground-truth solution x is known, denoted as S = supp(x),
we can compute the MSE of an oracle solution, given by the formula η2tr(A�

S AS)
−1, as

benchmark.
We compare the proposedERFmodelwith L1/2 via the half-thresholdingmethod [36], L1,

and L1-L2 (both are solved via ADMM).We use cross validation (CV) [1,2] to determine the
value of the parameter σ and λ for ERF. In particular, we use a matrix A of size 300×512 and
adopt 10-fold CV by splitting the 300 samples into 10 equal-sized subsets. For k = 1, . . . , 10,
we decompose the rowvectors of A into the disjoint training and testing sets, where the testing
set contains the kth subset and the remaining data constitutes the training set. We consider
two candidate parameter sets: σ ∈ {0.01, 0.1, 0.5, 1, 10} and λ ∈ {0.001, 0.01, 0.1, 1}. For
each combination of σ and λ, we estimate the sparse coefficient using the training set and
calculate the prediction error of the fitted model on the testing set. The optimal values are
chosen as σ = 0.5, λ = 0.1 which yield the smallest predication error after averaging
over 10 folds. The same strategy is used to find the optimal λ value among a candidate set
of {0.001, 0.01, 0.1, 1} for the other regularized models. We use these optimal parameters
selected using CV for all of the following numerical comparison.

In Table 1, we present the mean and the standard deviation of MSE and computation time
at the four particular m values: 240, 270, 300, and 340. Each reported value (MSE and time)
is the average of 100 random realizations. The proposed method achieves the best results.
We present morem values in Fig. 6, which is based on an average of 100 random realizations
under the same setup. L p and ERF are asymptotically approaching the oracle solutions for
larger m values. Note that we use 300 samples in CV to find the optimal parameters, and fix
them when varying the value of m. The results in Table 1 and Fig. 6 demonstrate that ERF is
less sensitive to parameter selection compared to other competing methods.
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Table 1 Recovery results of noisy signals (mean and standard deviation over 100 realizations)

Methods m MSE Time (s) m MSE Time (s)

Oracle 4.55 (0.08) 3.56 (0.04)

L1/2 5.89 (0.80) 4.03 (2.92) 4.56 (0.79) 7.42 (2.95)

L1 240 5.77 (0.68) 0.09 (0.11) 270 4.76 (0.63) 0.08 (0.02)

L1-L2 5.61 (0.72) 0.25 (0.28) 4.55 (0.63) 0.19 (0.04)

ERF 5.59 (1.22) 0.57 (0.20) 3.91 (0.62) 0.48 (0.12)

Oracle 2.77 (0.02) 2.37 (0.02)

L1/2 3.22 (0.35) 8.42 (3.27) 2.63 (0.26) 8.94 (3.50)

L1 310 3.68 (0.36) 0.06 (0.01) 340 3.08 (0.29) 0.06 (0.01)

L1-L2 3.49 (0.34) 0.15 (0.03) 2.94 (0.26) 0.13 (0.03)

ERF 2.91 (0.27) 0.31 (0.05) 2.49 (0.18) 0.27 (0.05)

The best results are highlighted in boldface and oracle results are in italics
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Fig. 6 MSE of sparse recovery under the presence of additive Gaussian white noise. The sensing matrix is
of size m × n, where m ranges from 240 to 350 and n = 512. The ground-truth sparse vector contains 130
nonzero elements. Each MSE value is the average of 100 random realizations

6 Conclusions and FutureWorks

We propose a novel regularization based on the error function for sparse signal recovery.
The asymptotic behavior of the error function indicates that the proposed regularization can
approximate the standard L0, L1 norms as the parameter approaches 0 and ∞, respectively.
We apply Newton’s method to find a solution for the proximal operator corresponding to
the proposed regularization. Plots of asymptotic behavior and proximal solutions demon-
strate that the proposed regularizer is smoother and less biased than the L1 counterpart. We
also develop the iterative reweighted algorithms for constrained and unconstrained formula-
tions, both with guaranteed convergence. Experiments demonstrate that the proposed model
outperforms the state-of-the-art approaches in sparse recovery in various settings.
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Our future work will involve theoretical comparisons between gNSP for the proposed
regularizer and NSP for L1. We will also develop alternative numerical schemes to minimize
the proposed model, e.g., by using the proximal operator.
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Appendix: Proofs of (P3)–(P4) in Section 3.1

Proof To show the concavity of Jσ = ∑n
j=1 �σ (|x j |) on Rn+, we have for x > 0 that

d2

dx2
�σ (x) = −2x

σ 2 exp
(

− x2

σ 2

)
< 0,

which implies that �σ (x) is concave on [0,∞). Consequently, for any t ∈ [0, 1], x, y ∈ R
n+,

we have

�σ

(
t x j + (1 − t)y j

) ≥ t�σ (x j ) + (1 − t)�σ (y j ), for j = 1, . . . , n.

Therefore, (P3) holds, i.e.,

Jσ
(
tx + (1 − t)y

) =
n∑

j=1

�σ

(
t x j + (1 − t)y j

)

≥ t
n∑

j=1

�σ (x j ) + (1 − t)
n∑

j=1

�σ (y j )

= t Jσ (x) + (1 − t)Jσ (y).

As for (P4), we recall that

Jσ (x) =
n∑

j=1

∫ |x j |

0
e−π2/σ 2

dτ.

Then for any x, y ∈ R
n , we have

Jσ (x + y) =
n∑

j=1

∫ |x j+y j |

0
e−τ 2/σ 2

dτ

=
n∑

j=1

∫ |x j |

0
e−τ 2/σ 2

dτ +
n∑

j=1

∫ |x j+y j |

|x j |
e−τ 2/σ 2

dτ

≤
n∑

j=1

∫ |x j |

0
e−τ 2/σ 2

dτ +
n∑

j=1

∫ |x j |+|y j |

|x j |
e−τ 2/σ 2

dτ

≤
n∑

j=1

∫ |x j |

0
e−τ 2/σ 2

dτ +
n∑

j=1

∫ |y j |

0
e−τ 2/σ 2

dτ.

The last inequality is guaranteed by the fact that e−τ/σ 2
is nonnegative and decreasing for

τ ∈ [0,∞). Therefore, we have Jσ (x + y) ≤ Jσ (x) + Jσ (y). ��
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