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Abstract. The application of Partially Parallel Imaging (PPI) techniques to reg-
ular clinical Magnetic Resonance Imaging (MRI) studies has brought about the
benefit of significantly faster acquisitions but at the cost of amplified and spa-
tially variant noise, especially, for high parallel imaging acceleration rates. A
Local Mutual Information (LMI) weighted Total Variation (TV) based model is
proposed to remove non-evenly distributed noise while preserving image sharp-
ness. For self-calibrated PPI, such as GeneRalized Auto-calibration Partially Par-
allel Acquisition (GRAPPA) and modified SENSitivity Encoding (mSENSE), a
low spatial resolution high Signal to Noise Ratio (SNR) image is available be-
sides the reconstructed high spatial resolution low SNR image. The LMI between
these two images is used to detect the noise distribution and the location of edges
automatically, and is then applied as guidance for denoising. To better preserve
sharpness, Bregman iteration scheme is utilized to add the removed signal back to
the denoised image. Entropy of the residual map is used to automatically termi-
nate iteration without using any information of the golden standard or real noise.
Results of the proposed algorithm on synthetic and in vivo MR images indicate
that the proposed technique preserves image edges and suppresses noise well in
the images reconstructed by GRAPPA. The comparison with some existing tech-
niques further confirms the advantages. This algorithm can be applied to enhance
the clinical applicability of self-calibrated PPI. Potentially, it can be extended to
denoise general images with spatially variant noise.

1 Introduction

PPI techniques [13,16,7,14,8,2,9] are routinely used to achieve increased image reso-
lution, decreased motion artifacts and shorter scan time to ensure patient cooperation
and tolerance, as well as to meet the work flow demands of a busy clinical service.
However, PPI techniques reduce acquisition time at the cost of loss in SNR and gain
in residual aliasing artifacts [13]. With increase in parallel imaging acceleration rate
R, the increase in noise and artifacts can be significant thereby reducing the diagnostic
quality of the image.

A lot of existing denoising techniques [15,5,4,10] assume that the noise that corrupts
quality of the acquired image has Gaussian distribution. However, images reconstructed
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by PPI have various kinds of spatially variant (non-evenly distributed) noise; and the
noise distribution is decided by the geometry of the coil as well as the reconstruction
scheme. Furthermore, besides noise, it is possible that there are some residual aliasing
artifacts in these images. A good thing about PPI is that it provides some extra infor-
mation besides the noisy image itself. For images reconstructed by SENSE [13], the
noise distribution is prescribed by geometry factor [13] that can guide the denoising
[18]. For self-calibrated technique GRAPPA, a low spatial resolution high SNR image,
named regulating image, is intrinsically available. The relationship between this regu-
lating image and the noisy image is that the regulating one is reconstructed using only
the fully acquired low frequency information (the central k-space), while the noisy one
is reconstructed using both the low frequency and the partially acquired high frequency
information. The regulating image is noise free because noise is usually of high fre-
quency, but it is of lower resolution. The two images are perfectly registered because
they are reconstructed from data created at the same time.

The purpose of this work is to develop a technique that takes advantage of the reg-
ulating image and removes spatially variant noise/artifact in images reconstructed by
self-calibrated PPI, especially GRAPPA. The idea can be extended to smooth general
noisy images even when there is no direct ”regulating” image available. One can apply
a low pass filter to generate a ”regulating” image.

To protect edge information, anisotropic smoothing techniques such as the famous
total variation model [15] and spatially varying diffusion filtering [11,17,3,1,6], were
widely used for image denoising.

Assume the given noisy image I is related to the real clean image u by I = u + n
with n the noise. Under the assumption that noise n follows a Gaussian distribution
with 0 mean and fixed variance, the TV model recovers u by minimizing the following
energy functional.

A(u) =
∫

Ω

λ|∇u|dx +
1
2

∫
Ω

(u − I)2dx (1)

where Ω is the image domain, λ is a positive weight that is spatially invariant and is
related to variance of the Gaussian noise. Constant weight λ does not work well for
images with strongly non-even noise levels, especially those generated using PPI.

A substitute is to choose spatially adaptive weight λ. A straightforward one is an edge
detector function that has lower values near edges but higher values in homogeneous
regions. The one used in experiments for comparison is defined as follows.

λ(x) =
a

1 + b|∇u(x)|2 (2)

Edge detector functions are able to distinguish edges from homogeneous regions,
but they tend to treat regions with high level of noise and artifacts that also have high
gradients as edges, thereby inaccurately screen those noise and artifacts from being
removed.

We propose to utilize the LMI between the regulating image and the noisy image
to detect noise distribution and edge information, and to tell edges apart from highly
noisey regions in particular, then use a function that is reversely proportional to LMI
as weight λ and build it into a TV model. This LMI weighted TV will smooth more
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at noisier regions, while less near edges and smoother regions. However, if the overall
weight is larger than enough, it will still smooth out fine structures and blur edges. Osher
et al.’s celebrated Bregman iteration [10] comes to aid, it preserves edges by restoring
edge information that might be disregarded during the smoothing process. The residual,
which is the difference of the original raw image and the resulting smoothed image, of-
ten has both noise and edge information. In [10], the residual is incorporated back into
the smoothing process to restore the edge information.It is extremely important to ter-
minate the iteration before too much noise returns to the resulting smoothed image.
The original paper terminates when L2 norm of the residual is smaller than standard
deviation of the Gaussian noise. This criterion is not appropriate in practice because
standard deviation is usually unknown. We propose to use entropy of the residual to ter-
minate the iteration automatically. The proposed LMI weighted TV incorporated with
Bregman iteration is named LMI-Denoiser.

The organization of the paper is as follows. In section 2, the proposed LMI-Denoiser
is discussed in details. Section 3 illustrates experimental results on synthetic and in vivo
data to validate the proposed model. Comparison with some other models is made in
section 4. Conclusion and future work is drawn in section 5.

2 LMI-Denoiser

Mutual information and local mutual information have been widely used in image reg-
istration [12], but not in image denoising. Let I be the to-be-smoothed image, J be the
regulating image. At each location x, we consider I(x) and J(x) as two random vari-
ables, and let NBr(x) be a window that is centered at x with side r, then use restriction
of I and J on the window to approximate joint and marginal probability density func-
tion (p.d.f) of I(x) and J(x), the LMI between I(x) and J(x) is simply the mutual
information between I and J at x:

LMI(I(x), J(x)) �
∫

NBr(x)

∫
NBr(x)

p(x′, y′)log(
p(x′, y′)

p(x′)p(y′)
)dx′dy′ (3)

where p(x′, y′) is the joint p.d.f. of I(x) and J(x), p(x′), p(y′) are marginal p.d.f.
of I(x) and J(x) respectively. LMI(I(x), J(x)) provides a nonnegative measure of
local dependence between I and J at x. It is zero only when I(x) and J(x) are totally
independent of each other, the more they depend on each other, the higher the LMI
will be. Notice that I and J are images of the same object, if there is no noise around
x in I , I should dependent a lot on the noise free image J ; the more noise exists at
x in I , the more the dependence between I and J will be deteriorated and thus the
smaller the value of LMI would be. Moreover, even though edges are blurred and fine
structures are not clear in the regulating image J , it still shares strong edges, which are
usually less deteriorated by noise, with I . Therefore LMI near strong edges are large.
Thus, LMI detects noise distribution and strong edge location. Observing LMI is low
at regions with high noise levels, high at smoother regions and near edges, a function
that is reversely proportional to LMI works as an ideal denoising weight. Hence, LMI-
Denoiser will be a powerful tool to guide image denoising adaptively and automatically.
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The proposed LMI-Denoiser is the following.

– Initialize: u0 = 0 and v0 = 0.
– for k= 0, 1, 2,...: compute uk+1 as a minimizer of the following LMI weighted TV

energy functional,
∫

Ω

f(LMI(I(x), J(x))|∇u|dx +
1
2

∫
Ω

(I + vk − u)2dx (4)

and update

vk+1 = vk + I − uk+1 (5)

where

f(LMI(I(x), J(x))) =
a

1 + bLMI(I(x), J(x))
(6)

The number of iterations decides the quality of the smoothed image. We propose to
utilize Shannon entropy of the residual map I − uk to terminate the iteration. Shan-
non entropy is a measure of uncertainty or randomness of a random variable, the more
random the variable is, the higher the entropy is. At early stages, Shannon entropy of
residual is low because there is more signal inside the residual, then it will increase with
the iteration as more signal is removed from the residual. After it reaches the highest
entropy, it will start to decrease due to return of signal in residual. The k corresponding
to the global maximal entropy should provide the optimal stage. We will demonstrate
that this entropy based termination criterion provides consistent results with L2 norm
and mutual information between the reference and the smoothing result.

LMI is a p.d.f. based estimation. Theoretically, its accuracy suffers from small data
size ( small r), but too big r will cause wide band near edges in LMI, thus the edges of
fine structures can not be detected easily. Therefore, an optimal radius is essential to the
behavior of LMI. Experimentally, we have tried r = 4, 5, 6, 7 for images of resolution
256× 256 and found no significant difference in results, so we fix r to be 5. Moreover,
we do not use normalized mutual information because the overlap between the two
subimages are fixed.

There are two parameters, i.e., a, b in the model. b is used to balance the value of
LMI and 1, b could be chosen such that the order of b times mean value of LMI is in
the order of 103. b was fixed as 104 in the experiments. a balances the smoothing and
image fidelity. Since the Bregman iteration scheme (4)-(5) can pick up signal back for
over smoothed image, the choice of a can be flexible, an automatic scheme for choice
of a will be provided in a separate work.

3 Experimental Results

One set of Shepp-Logan phantom data , one set of cine cardiac data and one set of brain
data are used to validate the proposed method.

Full k-space data which are not available in general are scanned in particular for these
three data sets for validation purpose. The reference images, i.e. the golden standards,
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Fig. 1. Smoothing results of the cardiac and phantom data. First and second row, from left to
right: the high resolution low SNR noisy image I , the regulating image J , the LMI-Denoiser
smoothing result and the reference image for cardiac and phantom data respectively; third row:
difference maps and f(LMI) maps (as defined in 6) with a = 104, b = 500. Brighter regions
correspond to higher intensity.

are reconstructed with the full k-space data. To simulate PPI, artificially down sampled
data are used to reconstruct noisy image I through GRAPPA. The acceleration rate is 4,
5, and 5 for phantom, cardiac, and brain data set respectively, i.e. only 25%, 20%, and
20% of the k-space data are used for reconstruction. GRAPPA with a 4× 5 convolution
kernel is used for image reconstruction. The convolution kernels are calculated with the
auto-calibration signal (ACS) lines located at the central k-space. The number of ACS
lines are 64, 24, and 56 for phantom, cardiac and brain data respectively. The ACS lines
are used to generate the low spatial resolution but high SNR regulating images (J in (4))
through Fourier transform.

Fig. 1 compares the high resolution low SNR noisy image I , the regulating image J ,
the LMI-Denoiser smoothing result and the reference image for cardiac and phantom
data. It can be seen that non-evenly distributed noise is efficiently removed and the
sharpness is well preserved for both data sets. Difference between the noisy images
and the reference images are shown in the third row (first image for cardiac data, third
image for phantom data) to demonstrate true noise distribution. Edge information can be
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Fig. 2. Smoothing results(top) and difference maps(bottom) of four stage results of the proposed
model (4)-(5). Left to right: the first to fourth stage results. a = 100, b = 104.

clearly observed from the reference image. Compare the f(LMI) maps (second image
for cardiac, last image for phantom) with the difference maps and reference images,
it can be seen that f(LMI) has lower value near evident edges and low noise level
regions, and higher value near high noise level or serious artifacts region. Therefore,
f(LMI) detects noise distribution and strong edge information well. This explains
why the smoothing results are clean and sharp.
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Fig. 3. Compare three termination quantities as functions of number of stages. First : entropy of
the difference map between raw image and the smoothing result, second and third: relative error
and mutual information of the difference map between smoothing result and the reference.

The brain data set is used to demonstrate the rationality of using entropy as a ter-
mination criterion. Fig. 2 shows the smoothing results (left) and different maps (right)
after 1 to 4 stages (top to bottom). For better visibility, only partial image is demon-
strated. Fig. 3 plots the entropy values of each difference map, relative errors of each
smoothed image, and the mutual information values between the smoothed images and
the reference images. Clearly, entropy based result matches the mutual information and
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relative error based results well. All of them have exactly the same tendency and show
that the best result is the one at stage 3. This consistency confirms the rationality of
using entropy as a termination criterion. Since entropy of difference map does not need
the golden standard, which is not available in real case, entropy is the most applicable
criterion in general application.

4 Discussion

This section focuses on demonstrating advantages of the proposed method over some
existing TV based models. Beside the basic TV and edge detector weighted TV, we also
compare with correlation weighted TV. Correlation is another natural measure of depen-
dence between two random variables however, LMI is more general than correlation in
the sense that LMI detects both linear and nonlinear dependence while correlation only
detects linear dependence.

Due to range difference, parameters are chosen differently in different models, but
those shown are optimal results. Fig. 4 demonstrates that basic TV, edge detector TV,
and correlation weighted TV either can not remove noise sufficiently or smooth out fine
structures (pointed by dashed arrows, can also be seen from the corresponding differ-
ence maps), while the proposed model is able to remove non-even noise sufficiently and
preserve sharp edges well. The result of conventional TV with small weight for smooth-
ing has obvious residual artifacts and damaged boundary (first column); the result with
large weight (second column) is artifact free, but has more seriously blurred boundary.
Because the residual aliasing artifacts are serious in the noisy image, the edge detector

Fig. 4. Compare the proposed model with some other models. First row: smoothing results, second
row: difference maps. First and second column: basic TV smoothing result with λ = .3 and .6
respectively; third column: edge detector TV with a = 105, b = 5000; fourth column: correlation
weighted TV with a = 1, b = .5; last column: proposed model with a = 400, b = 104.
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mistakenly treats the artifacts as edges and hence smoothed the regions less. Therefore,
the smoothed image (third column) has clearly residual artifacts and noise. Local cor-
relation is another natural measure of dependence between two random variables, but it
only detects linear dependence, while LMI is more general in the sense it also detects
nonlinear dependence. So it is observed that the LMI based TV (last column) slightly
outperforms correlation based TV (fourth column). When only linear dependence exists
between I and J , and/or when computation cost is more important than accuracy, local
correlation can substitute LMI.

Quantitative comparison in sharpness and SNR between the LMI weighted TV and
basic TV based model, Gradient weighted TV, correlation weighted TV are made, it
shows that LMI weighted TV provides statistically significant larger sharpness and
SNR.

5 Conclusion and Future Work

This work proposed to use LMI between the noisy image and a regulating image to
automatically detect noise distribution and strong edge information for PPI images,
and then use it to remove noise and artifacts automatically and adaptively. Entropy was
proved to be an applicable termination criterion for the Bregman iteration. Experimental
results show the proposed method adaptively removed the noise and preserved strong
edges. But LMI cannot detect small fine structures because LMI is defined based on
patch instead of point wise information. The optimal a is a function of noise/artifacts
level. Hence for a given application, it is possible to decide a based on acceleration rate
and the geometry of the coil, an automatic decision scheme of a will be reported in a
separate work. A future work is to use the LMI between the unknown u and regulating
image J to define weight. Generalization of the proposed model to any images will be
reported in a separate work also.
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constraints. J. Sci. Comput. 19, 95–122 (2003)

4. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. IEEE Proc.
Comp. Visi. Pat. Recog. 2, 60–65 (2005)

5. Chan, T., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE. Trans.
Imag. Proc. 10(2), 231–241 (2001)

6. Chen, Y., Levine, S., Rao, M.: Functionals with p(x)-growth in image restoration. SIAM
Journal of App. Math. 66(4), 1383–1406 (2006)

7. Griswold, M., Jakob, P., Heidemann, R., Mathias, N., Jellus, V., Wang, J., Kiefer, B., Haase,
A.: A generalized approach to parallel magnetic resonance imaging: GRAPPA. Mag. Reson.
Med. 47, 1202–1210 (2002)



A Local Mutual Information Guided Denoising Technique 947

8. Lin, F., Huang, T., Chen, N., Wang, F., Stufflebeam, S., Belliveau, J., Wald, L., Kwong, K.:
Functional MRI using regularized parallel imaging acquisition. Magn. Reson. Med. 54(2),
343–353 (2005)

9. Lin, F., Wang, F., Ahlfors, S., Hamalainen, M., Belliveau, J.: Parallel MR reconstruction
using variance partitioning regularization. Magn. Reson. Med. 58, 735–744 (2007)

10. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for
total variation based image restoration. Multiscale Model. and Simul. 4, 460–489 (2005)

11. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans.
Pattern Anal. Machine Intell. 12(7), 629–639 (1990)

12. Pluim, J., Maintz, J., Viergever, M.: Mutual information based registration of medical im-
ages: a survey. IEEE Trans. Med. Img. 22(8), 986–1004 (2003)

13. Pruessman, K., Weiger, M., Scheidegger, M., Boesiger, P.: Sense: Sensitivity encoding for
fast MRI. Magn. Reson. Med. 42, 952–962 (1999)

14. Heidemann, R.M., Ozsarlak, O., Parizel, P.M., Michiels, J., Kierfer, B., Jellus, V., Mueller,
M., Breuer, F., Blaimer, M., Griswold, M.A., Jacob, P.M.: A brief review of parallel magnetic
resonance imaging. Eur. Radiol. 13, 2323–2337 (2003)

15. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.
Physica D 60, 259–268 (1992)

16. Sodickson, D., McKenzie, C.: A generalized approach to parallel magnetic resonance imag-
ing. Med. Phys. 1629, 1643 (1999)

17. Strong, D., Chan, T.: Spatially and scale adaptive total variation based regularization and
anisotropic diffusion in image. CAM-Report 96-46 UCLA (1996)

18. Vijayakumar, S., Huang, F., Akao, J., Duensing, G.: g-factor guided denoising for sense
reconstructed MR images with edge restoration. Int. Soci. Mag. Reson. Med. 2357 (2006)


	Introduction
	LMI-Denoiser
	Experimental Results
	Discussion
	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


