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Single-Image Super-Resolution via an Iterative
Reproducing Kernel Hilbert Space Method

Liang-Jian Deng, Weihong Guo, and Ting-Zhu Huang

Abstract— Image super-resolution (SR), a process to enhance
image resolution, has important applications in satellite imaging,
high-definition television, medical imaging, and so on. Many
existing approaches use multiple low-resolution (LR) images to
recover one high-resolution (HR) image. In this paper, we present
an iterative scheme to solve single-image SR problems. It recovers
a high-quality HR image from solely one LR image without
using a training data set. We solve the problem from image
intensity function estimation perspective and assume that the
image contains smooth and edge components. We model the
smooth components of an image using a thin-plate reproducing
kernel Hilbert space and the edges using approximated Heaviside
functions. The proposed method is applied to image patches,
aiming to reduce computation and storage. Visual and quanti-
tative comparisons with some competitive approaches show the
effectiveness of the proposed method.

Index Terms— Heaviside function, iterative reproducing kernel
Hilbert space (RKHS), single-image super-resolution (SR),
thin-plate spline.

I. INTRODUCTION

IMAGE super-resolution (SR), a quite active research field
currently, is a process to estimate a high-resolution (HR)

image from one or multiple low-resolution (LR) images.
HR means more details and better visibility. Due to lim-
itation of hardware devices and high cost, one sometimes
can collect only LR images. For instance, synthetic aperture
radar and satellite imaging cannot get HR images due to
long distance and air turbulence. In medical imaging magnetic
resonance imaging (MRI), HR images need more time and
cost [48], [61]. Thus, developing a more accurate and faster
image SR algorithm is important and has a lot of applications.
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Fig. 1. (a) LR image. (b) SR image using bicubic interpolation method
(note the blur effect). (c) SR image by nearest neighbor interpolation method
(note the jaggy effect on the edges). The upscaling factor is 4.

A. Literature Review

In this section, we review some existing SR meth-
ods, some of which will be compared with the proposed
method.

Many existing image SR methods need multiple LR images
as inputs. We refer to them as multiple-image SR. Mathemat-
ically, there are p LR images yi ∈ R

m available, and yi is
related to an HR image x ∈ R

n by

yi = DBi x + ni , 1 ≤ i ≤ p (1)

where D ∈ R
m×n is a downsampling operator, Bi ∈ R

n×n is
a blurring operator that might happen due to, for instance, out
of focus, and ni ∈ R

m represents random noise [52].
This paper addresses single-image SR, i.e., p = 1 in (1).

Compared with multiple-image SR, single-image SR is more
applicable when there is only one LR image available.
Obviously, it is also more challenging.

Existing SR methods, for both multiple images and single
image, can be roughly put into several categories: interpolation
based, statistics based, learning based, and others. This classi-
fication is by no means the best, but provides an organized way
for literature review. Note that ideas of methods in different
categories might have overlap. For instance, some learning-
based methods might also involve statistics.

Interpolation is a straightforward idea for image SR. There
are two popular classical interpolation methods: 1) nearest
neighbor interpolation and 2) bicubic interpolation. Nearest
neighbor interpolation fills in intensity at an unknown location
by that of its nearest neighbor point. It often causes jaggy
effect [see Fig. 1(c)]. Bicubic interpolation is to utilize a
cubic kernel to interpolate. It tends to create blur effect
[see Fig. 1(b)]. Recently, some state-of-the-art interpolation
methods have been proposed [26], [27], [40], [45], [65],
[66], [70]. In [40], for instance, it presents a new edge-directed
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interpolation method. It estimates local covariance coefficients
from an LR image, and then applies the coefficients to inter-
polate an HR image. In [74], the proposed edge-guided non-
linear interpolation is based on directional filtering and data
fusion. It can preserve sharp edges and reduce ring artifacts.
Mueller et al. [45] proposed an interpolation algorithm using
contourlet transform and wavelet-based linear interpolation
scheme. The proposed method belongs to this category.

Maximum a posteriori and maximum likelihood estimator
are popular statistics-based methods [6], [19], [20].
To preserve sharp edges, Fattal [20] utilized statistical edge
dependency to relate edge features in LR and HR images.
Farsiu et al. [19] proposed an alternate approach using
L1-norm minimization and a bilateral prior-based robust
regularization.

Learning-based approaches are a powerful tool for image
SR [10], [21], [23]–[25], [30], [37], [38], [41], [55], [56],
[58], [60], [69], [76]. They normally start from two large
training data sets, one formed of LR images and the other
formed of HR images, and then learn a relation between
LR and HR images. The relation is then applied to a given
LR image to get an HR image. Learning-based methods
usually can obtain high-quality images, but they are computa-
tionally expensive. The results might depend on the selection
of training data. In addition, they are not a completely single-
image SR since two large data sets are required for learning.
Sun et al. [56] utilized sketch priors to extend the low
vision learning approach in [25] to get clear edges, ridges,
and corners. Sun et al. [55] proposed a novel profile prior
of image gradient, which can describe the shape and the
sharpness of an image to obtain SR images. Qinlan et al. [69]
proposed a method via an example-based strategy that divides
the high-frequency patches of an LR image into different
classes. This method can accelerate image SR procedure.
Fernandez-Granda and Candès [21] used transform-invariant
group-sparse regularization. This method performs well for
highly structured straight edges and high upscaling factors.
In recent years, sparsity methods, usually associated with
learning-based ideas, have been widely discussed for image
SR [15], [33], [70]–[73], [75]. Yang et al. [71], [72] utilized
sparse signal representation to develop a novel method for
single-image SR. They first sought a sparse representation
for each patch of the LR image and computed corresponding
coefficients, and then generated the HR image via the com-
puted coefficients. Recently, Zeyde et al. [73] proposed a local
sparse-land model on image patches based on [71] and [72]
and obtained improved results.

In addition, many other image SR methods have also
been proposed, e.g., a frequency technique [3], pixel
classification methods [1], [2], iterative back projection
methods [11], [34], [39], [57], a hybrid method [14], a kernel
regression method [59], and others [5], [9], [22], [53], [62].

In summary, single-image SR is still a challenging problem.
Existing single-image SR methods either need training data
sets and expensive computation or lead to blur or jaggy
effects. The aim of this paper is to use a simple mathemat-
ical scheme to recover a high-quality HR image from one
LR image.

B. Motivation and Contributions of the Proposed Work

In this paper, we use reproducing kernel Hilbert
space (RKHS) and Heaviside functions to study single-image
SR with only one LR image as an input. We cast the SR prob-
lem as an image intensity function estimation problem. Since
images contain edges and smooth components, we model them
separately. We assume that the smooth components belong
to a special Hilbert space called RKHS that can be spanned
by a basis. We model the edges using a set of Heaviside
functions. We then use intensity information of the given
LR image defined on a coarser grid to estimate coefficients
of the basis and redundant functions, and then utilize the
coefficients to generate HR images at any finer grids. For
even better performance, we make the procedure iterative to
recover more details, motivated by the iterative back projection
method [34] and the iterative regularization method [47].

This paper has the following main contributions.
1) To the best of our knowledge, this is the first work

to employ RKHS method to get competitive image
SR results. RKHS-based methods have been considered
as a powerful tool to address machine learning for a
long time. In image processing, however, only limited
studies have been done, e.g., image denoising [4], image
segmentation [36], and image colorization [49].

2) Employing Heaviside functions to recover more image
details, not only getting sharp image edges but also pre-
serving more high-frequency details on nonedge regions.

C. Organization of This Paper

The organization of this paper is as follows. In Section II,
we review RKHS and splines-based RKHS. We will also make
two remarks in this section. In Section III, we present the
proposed iterative RKHS model based on Heaviside functions
and discuss the algorithms. Many visual and quantitative
experiments are shown in Section IV to demonstrate that
the proposed method is a competitive approach for single-
image SR. Finally, we draw the conclusions in Section V.

II. REVIEW ON SPLINES-BASED RKHS

In this section, we review RKHS, splines-based RKHS [63],
and their applications in signal/image smoothing. We will
use splines-based RKHS to model the smooth components of
images.

A. Review on RKHS and Its Applications

Given a subset X ⊂ R and a probability measure P

on X , we consider a Hilbert space H ⊂ L2(P), a family
of functions g : X → R, with ‖g‖L2(P) < ∞, and an
associated inner product 〈·, ·〉H under which H is complete.
The space H is an RKHS, if there exists a symmetric func-
tion K : X × X → R such that: 1) for each x ∈ X ,
the function K(·, x) belongs to Hilbert space H and 2) there
exists reproducing relation f (x) = 〈 f, K(·, x)〉H for all
f ∈ H. Any such symmetric kernel function must be
positive semidefinite (see Definition 1). Under suitable reg-
ularity conditions, Mercer’s theorem [43] guarantees that
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the kernel has an eigenexpansion of the form K(x, x ′) =∑∞
k=1 λkφk(x)φk(x ′), with λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0

being a nonnegative sequence of eigenvalues, and {φk}∞k=1
associated eigenfunctions, taken to be orthonormal in L2(P).

Definition 1 (Positive Semidefinite Kernel): Let X be a
nonempty set. The kernel K : X × X → R is positive
semidefinite if and only if Gram matrix K = [K(xi , x j )]N×N ,
xi ∈ X , i, j = 1, 2, . . . , N , is a positive semidefinite matrix.

Since the eigenfunctions {φk}∞k=1 form an orthonormal
basis, any function f ∈ H has an expansion of the form
f (x) = ∑∞

k=1
√
λkakφk(x), where ak = 〈 f, φk〉L2(P) =∫

X f (x)φk(x) d P(x) are (generalized) Fourier coefficients.
Let f = ∑

. . . and g = ∑
. . . be two functions in

H. There are two distinct inner products. The first is
the usual inner product in the space L2(P) defined as
〈 f, g〉L2(P) : =

∫
X f (x)g(x) d P(x) = ∑∞

k=1 λkakbk by
Parseval’s theorem. The second inner product, denoted by
〈 f, g〉H, defines the Hilbert space. It can be written in
terms of the kernel eigenvalues and generalized Fourier
coefficients as 〈 f, g〉H =

∑∞
k=1 akbk . Using this definition,

the Hilbert ball of radius 1 for H with eigenvalues λk

and eigenfunctions φk(·) is BH(1) = { f ∈ H; f (·) =∑∞
k=1
√
λkbkφk(·) | ∑∞

k=1 b2
k = ‖b‖22 ≤ 1}. The class of

RKHS contains many interesting classes that are widely used
in practice including polynomials of degree d (K(x, y) =
(1 + 〈x, y〉)d ), Sobolev spaces with smoothness ν,
Lipschitz, and smoothing splines. Moreover, kernel

K(x, x ′) = (1/2)e−γ |x−x ′| leads to Sobolev space H1,
i.e., a space consisted of square-integrable functions whose
first-order derivative is square integrable. K(x, x ′) ∝ |x − x ′|
and K(x, x ′) ∝ |x − x ′|3 correspond to 1D piecewise linear
and cubic splines, respectively.

RKHS has appeared for many years, and it has been used as
a powerful tool for machine learning [7], [8], [12], [13], [44],
[46], [50], [54], [63]. Its application in image processing is
not so common yet. Bouboulis et al. [4] proposed an adaptive
kernel method to deal with image denoising problem in the
spatial domain. This method can remove many kinds of noises
(e.g., Gaussian noise, impulse noise, and mixed noise) and
preserve image edges effectively. In addition, Kang et al. [36]
and Quang et al. [49] utilized RKHS method to do image
segmentation and image/video colorization, respectively.

Wahba [63] proposed splines-based RKHS for smoothing
problems. It shows that the solution to an optimization problem
consists of a set of polynomial splines. The proposed method
is based on splines-based RKHS. We thus review them in the
following sections.

B. 1D Spline and Signal Smoothing

For a real-valued function

f ∈ G = { f : f ∈ Cm−1[0, 1], f (m) ∈ L2[0, 1]}
it can be expanded at t = 0 by Taylor series as

f (t) =
m−1∑

ν=0

tν

ν! f (ν)(0)+
∫ 1

0

(t − u)m−1+
(m − 1)! f (m)(u)du

= f0(t)+ f1(t) (2)

with

f0(t) =
m−1∑

ν=0

tν

ν! f (ν)(0)

and

f1(t) =
∫ 1

0

(t − u)m−1+
(m − 1)! f (m)(u)du

where (u)+ = u for u ≥ 0 and (u)+ = 0 otherwise.
Let

φν(t) = tν−1

(ν − 1)! , ν = 1, 2, . . . ,m

and H0 = span{φ1, φ2, . . . , φm} with norm ‖φ‖2 =∑m−1
ν=0 [(D(ν)φ)(0)]2, then D(m)(H0) = 0. It has been proved

in [63] that H0 is an RKHS with reproducing kernel R0(s, t) =∑m
ν=1 φν(s)φν(t). For a function f0 ∈ H0, we can express f0

using the basis of H0, i.e., f0(t) =∑m
ν=1 dνφν(t).

Let Bm be a set of functions satisfying boundary condition
f (ν)(0) = 0, ν = 0, 1, 2, . . . ,m − 1, and Gm(t, u) =
((t − u)m−1+ /(m − 1)!), then

f1(t) =
∫ 1

0

(t − u)m−1+
(m − 1)! f (m)(u)du =

∫ 1

0
Gm(t, u) f (m)(u)du

belongs to space H1 defined as follows:
H1 = { f : f ∈ Bm, f, f ′, . . . , f (m−1) absolutely continuous,

f (m) ∈ L2} (3)

where H1 is a Hilbert space on [0, 1] with norm
‖ f ‖2 = ∫ 1

0 ( f (m)(t))2dt . H1 has also been proved to
be an RKHS in [63] with reproducing kernel R1(s, t) =∫ 1

0 Gm(t, u)Gm(s, u)du. For a function f1 ∈ H1, we can
express f1 via the basis of H1, denoted by {ξi }ni=1, so that
f1(t) = ∑n

i=1 ciξi (t) = ∑n
i=1 ci R1(si , t), where ξi =

R1(si , ·).
Due to
∫ 1

0
((D(m) f0)(u))

2du = 0,
m−1∑

ν=0

((D(ν) f1)(0))2 = 0

we can construct a direct sum space Gm by the two RKHS
spaces H0 and H1, i.e., Gm = H0 ⊕H1. Gm is proved as an
RKHS in [63] with the following reproducing kernel:

R(s, t) =
m∑

ν=1

φν(s)φν(t)+
∫ 1

0
Gm(t, u)Gm(s, u)du (4)

and norm

‖ f ‖2 =
m−1∑

ν=0

[(D(ν) f )(0)]2 +
∫ 1

0
( f (m))2(t)dt (5)

where f ∈ Gm . As a summary, for f ∈ Gm , we have
f = f0 + f1, with f0 ∈ H0 and f1 ∈ H1. It can also be
written as

f (t) =
m∑

ν=1

dνφν(t)+
n∑

i=1

ciξi (t) (6)

where t ∈ [0, 1].
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Let �f = ( f (t1), f (t1), . . . , f (tn))′ be the intensity values
of f at ti ∈ [0, 1], i = 1, 2, . . . , n, and let

�g = �f + η (7)

be a noisy observation with η an additive Gaussian noise.
Let T be an n × m matrix with Ti,ν = φν(ti ) and let

� be an n × n matrix with �i, j = 〈ξi , ξ j 〉, we have the
relation �f = T d + �c, where d = (d1, d2, . . . , dm)

′ and
c = (c1, c2, . . . , cn)

′. In [63], the following model is used
to estimate �f from noisy discrete measurements �g:

min
c,d

1

n
‖�g − T d −�c‖2 + λc′�c (8)

where the second term penalties nonsmoothness.
The simple model (8) has a closed-form solution

c = M−1(I − T (T ′M−1T )−1T ′M−1)�g
d = (T ′M−1T )−1T ′M−1 �g

where M = � + nλI with I an identity matrix. The
computation burden of matrix inverse can be reduced via
QR decomposition (see the details in [63, Ch. 1]).

Remark 1: Once c and d are estimated from (8), one can
get an estimate for the signal function f (x)

f (x) =
m∑

ν=1

dνφν(x)+
n∑

i=1

ciξi (x)

=
m∑

ν=1

dνφν(x)+
n∑

i=1

ci R1(si , x) (9)

for any x ∈ [0, 1].
Next, we will review 2D thin-plate spline that can be viewed

as an extension of the mentioned 1D spline.

C. 2D Thin-Plate Spline and Image Smoothing

We use 2D thin-plate spline-based RKHS, introduced
in [63], for image SR in this paper. We thus review it.

Similar to the 1D case, let f be the intensity function
of a 2D image defined on a continuous domain E2 =
[0, 1] × [0, 1]. We assume that f belongs to an RKHS. Let
�f = ( f (t1), f (t1), . . . , f (tn))′ be its discretization on grids

ti = (xi , yi ) ∈ [0, 1] × [0, 1], i = 1, 2, . . . , n, the noisy image
of vector form with an additive noise η can be described by

�g = �f + η. (10)

In [63], an optimal estimate of f for spline smoothing
problems can be obtained by minimizing the following model:

min
1

n
‖�g − �f ‖2 + λJm( f ) (11)

where m is a parameter to control the total degree of polyno-
mial, and the penalty term is defined as follows:

Jm( f ) =
m∑

ν=0

∫ +∞

−∞

∫ +∞

−∞
Cν

m

(
∂m f

∂xν∂ym−ν

)2

dxdy. (12)

From [63, Ch. 2], we know that the null space of the
penalty function Jm( f ) is an M = Cd

d+m−1-dimensional space
spanned by the polynomials of degree no more than m − 1.

In the experiments, we let d = 2 (for 2D), m = 3, then
M = Cd

d+m−1 = 6, so the null space can be spanned by the
following terms: φ1(x, y) = 1, φ2(x, y) = x, φ3(x, y) = y,
φ4(x, y) = xy, φ5(x, y) = x2, and φ6(x, y) = y2.
Duchon [18] has proved that if there exists {ti }ni=1 so that least
squares regression on {φν}Mν=1 is unique, then the optimization
model (11) has a unique solution as follows:

fλ(t) =
M∑

ν=1

dνφν(t)+
n∑

i=1

ci Em(t, ti ) (13)

where Em(t, ti ) is a Green’s function for the m-iterated
Laplacian defined as

Em(s, t) = Em(|s − t|) = θm,d |s − t|2m−d ln|s − t|
where θm,d = ((−1)d/2+m+1/22m−1πd/2(m − 1)!(m − d/2)!),
especially Em(t, ti ) plays the same role with ξi (t) in the
1D case.

Similar to (8), model (11) can be rewritten as

min
1

n
‖�g − (T d + K c)‖2 + λc′K c (14)

where T is an n × M matrix with Ti,ν = φν(ti ) and
K is an n × n matrix with Ki, j = Em(ti , t j ). This
model also has a similar closed-form solution with the
1D case: d = (T ′W−1T )−1T ′W−1 �g, c = W−1(I −
T (T ′W−1T )−1T ′W−1)�g, where W = K +nλI . In addition, a
more economical version that utilizes QR decomposition has
also been provided to compute the coefficients c and d (see the
details in [63]). Moreover, more information about the thin-
plate spline can also be found in [16]–[18], [42], [51], and [64].

Remark 2: Once we have computed coefficients c and d ,
the underlying function f on the continuous domain E2 can
be estimated as

f (w) =
M∑

ν=1

dνφν(w)+
n∑

i=1

ci Em(ti , w) (15)

for any w = (x, y)′ ∈ E2. One thus can get an estimate of
f (w) at any w ∈ [0, 1] × [0, 1]. This is very powerful and
makes image SR possible.

III. PROPOSED ITERATIVE METHOD

Let f represent the intensity function of an image defined
on a continuous domain. Without loss of generality, we assume
that the domain is E2 = [0, 1] × [0, 1]. Let H and L be an
HR and an LR discretization of f , respectively. For notation
simplicity, we interchangeably use H and L to represent
their matrix and vector representations. H and L are usually
formulated by L = DB H+ε as described in (1), with D and B
a downsampling and a blurring operator, respectively, and
ε some random noise or 0 for the noise-free case. We note that
the HR image H ∈ R

U×V can be obtained by Hi = f (th
i ) with

th
i = (xi , yi ), xi ∈ {0, (1/U − 1), (2/U − 1), . . . , 1}, yi ∈
{0, (1/V − 1), (2/V − 1), . . . , 1} on a finer grid. LR image
L ∈ R

Q×S is gotten by the discretization formula Li = f (tl
i )

with tl
i = (xi , yi ), xi ∈ {0, (1/Q − 1), (2/Q − 1), . . . , 1},

yi ∈ {0, (1/S − 1), (2/S − 1), . . . , 1} on a coarser grid.
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In particular, Q and S are smaller than U and V , respectively.
Actually, T l ∈ R

n×M , K l ∈ R
n×n and T h ∈ R

N×M ,
K h ∈ R

N×n are the T, K matrices and T̃ , K̃ matrices
in Section II-C, respectively, where n = Q ·S, N = U ·V , and
M is the dimension of the null space of the penalty term (also
see the details in Section II-C). Motivated by the smoothing
model (14), c and d can be solved using the following model:

min
1

n
‖L − DB(T hd + K hc)‖2 + λc′K lc (16)

where H = T hd + K hc.
However, model (16) is for image smoothing. The SR results

via this model may smooth out image edges. In this paper,
we employ Heaviside functions to recover more image details
such as edges.

A. Heaviside Function

Heaviside function, or Heaviside step function
[see Fig. 2(a)], is defined as follows:

φ(x) =
{

0, x < 0

1, x ≥ 0.
(17)

The Heaviside function is singular at x = 0 and describes
a jump at x = 0 perfectly. We usually use its smooth
approximation for practical problems. In our work, we use
the following approximated Heaviside function (AHF):

ψ(x) = 1

2
+ 1

π
arctan

(
x

ξ

)

(18)

which approximates to φ(x) when ξ → 0 and ξ ∈ R actually
controls the smoothness. The smaller the ξ , the sharper the
jump [see Fig. 2(b)].

The AHF ψ(·) is a 1D function. Its variation
ψ(vi · x+ ci ) is, however, a 2D function when x ∈ R2. If we
let vi = (cos θi , sin θi ), ψ(vi · x+ ci ) can actually describe an
edge with orientation θi located at a position specified by ci .
In Fig. 3, we show some examples of ψ((cos θi , sin θi )·z+ci ).
One can observe that as θi and ci vary, we get edges of
various orientations at different locations. Confirmed by
the following theoretical foundation, we model edges in
2D images using linear combination of this type of function.

Theorem 1 (See [35]): For any positive integers m and d
and any p ∈ [1,∞), spanm Hd = {∑m

i=1 ωiψ(vi ·x+ci )}, with
ωi ∈ R, vi ∈ Rd , and ci ∈ R, is approximately a compact
subset of (Lp([0, 1]d), ‖ · ‖p).

2D images are defined in R2, i.e., d = 2. Based on the
above theorem, we model edges in 2D images using the
following:

g(z) =
m∑

j=1

ω jψ((cos θ j , sin θ j ) · z+ c j ) (19)

where small ξ = 10−4 is used in ψ , and

θ j ∈ {0, π/12, 2π/12, 3π/12, . . . , 23/12π}
while c j ∈ {0, (1/n − 1), (2/n − 1), . . . , 1}, where n is the
number of all the pixels of the LR image, and m = kn, where
k is the number of orientations {θ j }.

Fig. 2. (a) 1D Heaviside function. (b) Two AHFs with ξ = 0.7 (blue solid
line) and ξ = 0.05 (black dashed line), respectively. The smaller the ξ , the
sharper the edge. (Color images are better visualized in the pdf file.)

Fig. 3. Left: 3D surface images of ψ under ξ = 10−4 and nine
parameter pairs (θ, c). Right: the corresponding 2D images. From left to
right and then from top to bottom: (4π/5, 51/1024), (4π/5, 25/64),
(4π/5, 175/256), (6π/5, 135/1024), (6π/5, 1/2), (6π/5, 25/32),
(8π/5, 5/64), (8π/5, 75/256), and (8π/5, 75/128). (For better visualization,
some 3D surface images on the left are rotated so that we can observe the
edge jumps clearly.)

Actually, (19) can be written as g = �ω, where � ∈ Rn×m ,
g ∈ Rn , and ω ∈ Rm .

B. Proposed Iterative Method Based on RKHS and
Heaviside Functions

In this paper, we assume that the underlying image intensity
function f is the sum of smooth components and edges,
which are modeled using splines-based RKHS and Heaviside
functions, i.e., f = T d+ K c+�β. Since � contains a pretty
exhaustive list of functions while edges are pretty sparse in
images, it is thus reasonable to expect β to be sparse. The
final proposed model is as follows:
min

1

n
‖L − DB(T hd + K hc +�hβ)‖2 + λc′K lc + α‖β‖1

(20)

where H = T hd + K hc + �hβ and �1 sparsity is enforced
for β. For the blur-free case, B = I , an identity matrix,
DB(T hd + K hc+�hβ), is considered as T ld + K lc+� lβ.
Since ‖β‖1 is not differentiable, we make a variable substitu-
tion and solve the following equivalent problem:

min
1

n
‖L − (T ld + K lc +� lβ)‖2 + λc′K lc + α‖u‖1

s.t. u = β (21)
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using the alternating direction method of
multipliers (ADMM) that is a very popular method for solving
L1 problem [29], [31], [67]. In particular, the convergence
of ADMM method is guaranteed by [28] and [32]. The
augmented Lagrangian of problem (21) is as follows:

L(c, d, β, u) = 1

n
‖L − (T ld + K lc +� lβ)‖2 + λc′K lc

+ α‖u‖1 + ρ
2
‖u − β + b‖2 (22)

where α and ρ ∈ R are regularization parameters and b is a
Lagrangian multiplier.

The energy functional in (22) is separable with respect
to (c, d, β) and u. We can thus focus on the two subproblems

(c, d, β)-subproblem:
min
(c,d,β)

1

n
‖L − (T ld + K lc + � lβ)‖2

+ λc′K lc + ρ
2
‖u − β + b‖2 (23)

u-subproblem: min
u
α‖u‖1 + ρ

2
‖u − β + b‖2. (24)

The u-subproblem (24) has a closed-form solution and is
calculated for each ui (see [67]) as

ui = shrink

(

βi − bi ,
α

ρ

)

(25)

where shrink(a, b) = sign(a)max(|a − b|, 0) and 0.(0/0) = 0
is assumed.

We employ least squares method to solve the (c, d, β)-
subproblem (23). The normal equation reads as

⎛

⎝
K l′K l + nλK l K l′T l K l′� l

T l′K l T l′T l T l′� l

� l′K l � l′T l � l′� l + nρ
2 I

⎞

⎠

⎛

⎝
c
d
β

⎞

⎠

=
⎛

⎜
⎝

K l′ L
T l′L

� l′L + nρ

2
(u + b)

⎞

⎟
⎠. (26)

Equation (26) can be rewritten as the following three
equations:
(K l′K l + nλK l)c + K l′T ld + K l′� lβ = K l′L (27)

T l′K lc + T l′T ld + T l′� lβ = T l′L (28)

� l′K lc +� l′T ld +
(
� l′� l + nρ

2
I
)
β = � l′L + nρ

2
(u + b).

(29)

We can solve for β from (29) in terms of c and d

β =
(
� l′� l + nρ

2
I
)−1

×
(
� l′L + nρ

2
(u + b)− � l′K lc −� l′T ld

)
. (30)

We then substitute (30) into (27) and (28) and obtain

c = (
A1 − A3 A−1

4 A2
)−1(

e1 − A3 A−1
4 e2

)

d = A−1
4 (e2 − A2c)

β =
(
� l′� l + nρ

2
I
)−1

×
(
� l′L + nρ

2
(u + b)−� l′K lc −� l′T ld

)
(31)

Algorithm 1 ADMM Algorithm to Minimize (22)

Input: Given L, T l, K l ,� l , λ, α, ρ, γ ∈ (0, (√5+ 1)/2)
Output: c, d, β

j ← 0, (c( j ), d( j ), β( j ))← 0, u( j )← 0, b( j )← 0
while not converged do

1. j ← j + 1
2. (c( j ), d( j ), β( j ))← solve subproblem (23) for

u = u( j−1), b = b( j−1)

3. u( j )← solve subproblem (24) for β = β( j ),
b = b( j−1)

4. b( j )← b( j−1) + γ (u( j ) − β( j ))
End while.

Algorithm 2 [Single-Image Super-Resolution via
RKHS (SR-RKHS)]

Input: one low-resolution image L ∈ R
Q×S , λ > 0, α > 0,

τ : maximum number of iteration
Output: high-resolution image Ĥ ∈ R

U×V

Step 1. Set coarse grids tl and fine grids th .
Step 2. Construct matrices T l , K l ,� l (refer to

Sections II-C and III-A) for i, j = 1, 2, . . . , n, n = Q.S,
ν = 1, 2, . . . ,M . Similarly for T h, K h,�h except
i = 1, 2, . . . , N; j = 1, 2, . . . , n, where N = U · V .

Step 3. Initialization: L(1) = L.
for k = 1: τ
a. Compute the coefficients: (c(k), d(k), β(k)) =
argmin 1

n ‖L(k) − DB(T hd + K hc +�hβ)‖2+
λc′K lc + α||β||1.
b. Update the high-resolution image:
H (k) = T hd(k) + K hc(k) + �hβ(k).
c. Downsampling H (k) to coarse grid: L̃ = DB H (k).
d. Compute residual: L(k+1) = L(k) − L̃ .
end

Step 4. Compute the final high-resolution image:
Ĥ =∑τ

i=1 H (i).

where A1 = (K l′K l + nλK l) − K l′� l(� l′� l + (nρ/2)
I )−1� l′K l , A2 = T l′K l − T l′� l(� l′� l + (nρ/2)I )−1� l′K l ,
A3 = K l′T l − K l′� l(� l′� l + (nρ/2)I )−1� l′T l , A4 =
T l′T l − T l′� l(� l′� l + (nρ/2)I )−1� l′T l , e1 = K l′L −
K l′� l(� l′� l + (nρ/2)I )−1(� l′L + (nρ/2)(u + b)), and e2 =
T l′ L − T l′� l(� l′� l + (nρ/2)I )−1(� l′L + (nρ/2)(u + b)).
Equation (31) looks complicated and involves some matrix
inversions, but we compute it only once in the algorithm
and the matrix inversions are not ill conditioned with proper
λ and ρ. If we apply the algorithm to image patches (see the
details at the end of this section), the computation is very
cheap.

The following algorithm is the corresponding ADMM
scheme.

Note that the convergence of Algorithm 1 is guaran-
teed by the following theorem that its proof can be found
in [28].

Theorem 2: For any γ ∈ (0, (
√

5 + 1)/2), the
sequence {(c( j ), d( j ), β( j ))} obtained by Algorithm 1



DENG et al.: SINGLE-IMAGE SR VIA AN ITERATIVE RKHS METHOD 2007

converges to the solution of problem (20) for any initial points
u(0) and b(0).

In particular, we set γ = 1 and β(0) = b(0) = 0 in
our work, and the convergence of Algorithm 1 thus can be
guaranteed.

Although model (20) can pick up more image details, it
cannot completely overcome blur effect along the edges of the
HR image. Due to imperfect reconstruction from the model,
we observe residual edges in a difference image L−DB H (1),
where H (1) is the computed HR image by model (20).
Inspired by the iterative back projection method [34] and
the iterative regularization method [47], we consider the dif-
ference L − DB H (1) as a new LR input L and recompute
model (20) to get a residual HR image H (2). We repeat
this process until the residual is small enough. The sum
of the HR image H (1) and its residual HR images is the
resulted SR image Ĥ . The strategy can recover more image
details (see Fig. 4). In our experiments, it is enough to
iterate the process ten times. Algorithm 2 summarizes the
proposed iterative RKHS algorithm for single-image SR. This
algorithm can work for general D and B though we mainly
tested it with bicubic downsampling and blur free in the
experiments.

For Algorithm 2, note that although we introduce
some parameters in the SR algorithm, these parameters
are all not sensitive and easy to select (see the remark
on parameters in Section IV). The solution of step 3a
is obtained by Algorithm 1. Downsampling operators D,
associated with steps 3a and 3c in Algorithm 2, are
done by bicubic interpolation (in MATLAB function:
imresize).

Algorithm 2 can be applied to the whole image or patch by
patch. In our numerical experiments, we apply the algorithm to
image patches to reduce computation time and storage. We set
patch size to be 6×6 with overlaps. Intensity at the boundary
is estimated by bicubic interpolation.

In what follows, we compare the proposed approach with
some competitive methods.

IV. NUMERICAL EXPERIMENTS

In this section, we mainly compare the proposed approach
with some state-of-the-art SR methods: bicubic interpolation,
a fast upsampling method (08’TOG [53]), and a learning-
based method (10’TIP [71]). In addition, the proposed
method can actually be viewed as an interpolation-based
approach. Thus, it is necessary to compare the proposed
method with some state-of-the-art interpolation methods, e.g.,
two contour stencils-based interpolations (11’SIAM [26] and
11’IPOL [27]) and an interpolation- and reconstruction-based
method (14’TIP [65]). Furthermore, we also compare the pro-
posed method with a kernel regression method (07’TIP [59])
and multiscale geometric method (07’SPIE [45]).

We use two kinds of test images. One is LR images without
HR ground truth (see Section IV-A). The other is simulated
LR images from the known HR images (see Section IV-B).
In the later case, one has HR ground truth available for
quantitative comparisons. For fair comparison, we set B = I

Fig. 4. SR image Lena by Algorithm 2. (a) Sum image of H (i), i = 1, 2, 3.
(b) Computed image for the first iteration. For better vision, we add 0.5 to
the intensities of (c) H (2) and (d) H (3). From the last two images, we know
that H (2) and H (3) pick up some image details.

in our experiments because some of the methods compared do
not involve deblurring process. All the experiments are done
in MATLAB (R2010a) on a laptop of 3.25-GB RAM and Intel
Core i3-2370M CPU: @2.40 GHz.

The proposed algorithm (Algorithm 2) is for grayscale
images. For color images such as RGB, there is redundancy in
channels; we first transform it to YCbCr color space,1 where
Y represents luminance component and Cb and Cr represent
blue-difference and red-difference components that are less
redundant. Y is essentially a grayscale copy of the color image
and carries most of the HR details of the color image. This
color space is very popular in image/video processing. Because
humans are more sensitive to luminance changes, the proposed
algorithm is applied only to the illuminance channel and
bicubic interpolation is applied to the color layers (Cb and Cr).
The upscaled images in the YCbCr space are transformed
back to the original color space for visualization/analysis.
The color image results are better visualized in the original
pdf file.

We employ root-mean-square error (RMSE) for quan-
titative comparisons, and the RMSE index is used in
some SR works, e.g., 10’TIP [71]. Furthermore, a popular
index peak signal–noise ration (PSNR) is utilized to esti-
mate the performance of different methods. In particular,
we compute PNSR only on the luminance channel Y in
the experiments. In addition, we also employ the struc-
tural similarity (SSIM) index2 [68] to compare different
methods.

A Remark on Parameter Selection: The related parameters
in Algorithms 1 and 2 are easy to select. We set λ = 10−11,
α = 10−4, and ρ = 10−5. The maximum iteration τ is three.
For simplicity, we do only ten iterations for Algorithm 1.
In addition, we set M = 6 so that φ1(t) = 1, φ2(t) = x ,
φ3(t) = y, φ4(t) = xy, φ5(t) = x2, and φ6(t) = y2

(see the details in Section II-C). Note that the proposed
method includes many parameters, e.g., λ, ρ, patch size, and
so on. However, they are easy to select because the proposed
method that can be viewed as an interpolation approach is not
sensitive to the selection of parameters. Actually, choosing
suitable parameters is always a difficulty to many image
algorithms. Tuning empirically is a popular way to determine
parameters. In our work, we obtain the parameters by tuning
empirically.

1http://en.wikipedia.org/wiki/YCbCr
2https://ece.uwaterloo.ca/~z70wang/research/ssim/
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Fig. 5. Compare the proposed algorithm with some state-of-the-art approaches: bicubic interpolation, 07’TIP [59], 08’TOG [53], 10’TIP [71], 11’IPOL [27],
11’SIAM [26], and 14’TIP [65]. The upscaling factor is 3. No ground-truth HR images are available for quantitative comparison. Color images are better
visualized in the pdf file.

A. Results on Low-Resolution Images Without
Ground Truth

In this section, experiments are based on natural
images without ground truth, thus quantitative comparisons
(e.g., RMSE) are not available.

In Figs. 5 and 6, we compare the proposed SR-RKHS
method with classical bicubic interpolation, 07’TIP [59],
08’TOG [53], 10’TIP [71], 11’IPOL [27], 11’SIAM [26],
and 14’TIP [65]. The upscaling factors are all 3. From
Figs. 5 and 6, the results of bicubic interpolation, 07’TIP, and
08’TOG show blur effect for the whole image. The results of
10’TIP and 14’TIP preserve sharp edges well; however, they
smooth out image details on nonedge regions, e.g., freckles
on the skin (see the closeups in Fig. 6). The two contour
interpolation methods 11’IPOL and 11’SIAM keep image
edges and details well, but the results contain some artificial
contours near true edges. The proposed method performs well,

not only on edges but also for fine details/textures away from
the edges.

B. Results on Low-Resolution Images Simulated From
Known Ground-Truth Images

To provide quantitative comparisons in terms of RMSE,
PSNR, and SSIM, we start from some HR images, treat
them as ground truth, and simulate LR images by bicubic
interpolation.

In this section, we mainly compare the proposed method
with several state-of-the-art methods: bicubic interpolation,
08’TOG [53], 10’TIP [71], 11’IPOL [27], and 14’TIP [65].
In Figs. 7–9, upscaled HR images by bicubic interpolation
show blur effect. Although we can get sharp edges via
08’TOG [53], it flattens the details on nonedge regions. The
method 11’IPOL [27] recovers image details well, but intro-
duces some artificial contours near true edges. For instance, for
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Fig. 6. More examples to compare the proposed method with some state-of-the-art methods. Note that the upscaling factor is also 3.

Fig. 7. Qualitative comparison for the image face among the proposed method, bicubic interpolation, 08’TOG [53], 10’TIP [71], 11’IPOL [27], and
14’TIP [65], with an upscaling factor of 2.

Fig. 8. Results of Baboon (upscaling factor 4) and Forest (upscaling factor 4). Compared methods: bicubic interpolation, 08’TOG [53], 10’TIP [71],
11’IPOL [27], 14’TIP [65], and ours. In particular, readers are recommended to zoom in all the figures for better visualization.

the Baboon example in Fig. 8, it has many artificial contours
near the true edges (see the closeup in Fig. 8). 14’TIP [65]
preserves sharp image edges, but smoothes out image intensity

not on edges. The method 10’TIP [71] obtains competitive
visual results; however, it generates worse quantitative results
than the proposed method (see Table I). In addition, the results
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TABLE I

QUANTITATIVE COMPARISONS OF DIFFERENT METHODS IN TERMS OF RMSE, PSNR, AND SSIM (BOLD: THE BEST ONE

AND UNDERLINE: THE SECOND BEST). COMPARED METHODS: BICUBIC INTERPOLATION, 08’TOG [53],

10’TIP [71], 11’IPOL [27], 14’TIP [65], AND THE PROPOSED METHOD

Fig. 9. Results of Baby with an upscaling factor of 2.
First row: ground-truth image, bicubic interpolation (RMSE = 3.58;
PSNR = 37.06; SSIM = 0.993), and 07’SPIE [45] (3.73; 36.70; 0.996).
Second row: 08’TOG [53] (4.32; 35.43; 0.982), 10’TIP [71] (3.40; 37.51;
0.995), and 11’IPOL [27] (3.37; 37.58; 0.997). Third row: 11’SIAM [26]
(3.24; 37.93; 0.997), 14’TIP [65] (4.19; 36.82; 0.985), and the proposed
method (3.17; 38.19; 0.997).

of 07’SPIE [45] and 11’SIAM [26] in Fig. 9 also perform
worse than the proposed method. The proposed method not
only preserves sharp edges but also keeps high-frequency
details well on nonedge regions. Furthermore, the proposed

method also gets the best RMSE, PSNR, and SSIM for almost
all the examples.

In Fig. 10 and Table I, we find that the proposed method
gets better quantitative and visual results. The results of
bicubic interpolation and 08’TOG show significant blur
effect. The method 11’IPOL also obtains excellent visual
results, but the visual results show obvious artificial contours.
The method 14’TIP gets the sharpest image edges, but it
smoothes out image details on nonedge regions. In addition,
the method 10’TIP obtains similarly visual results with
the proposed method, but the proposed method has lower
RMSE and larger PSNR and SSIM. In Fig. 11, the proposed
method performs best, especially for image details, e.g., hair
of Lion. The learning-based method 10’TIP [71] obtains
excellent visual and quantitative results; it, however, needs
extra training data to generate dictionary. We also give the
corresponding error maps in Fig. 12. Furthermore, we can
find more quantitative comparisons in Table I. It demonstrates
that the proposed method gets better quantitative performance
than other methods for almost all the examples. In particular,
instead of RKHS and Heaviside functions, one can use
wavelet basis or frames in our framework. We have not got
time to compare the performance.

Computation Issue: We present the computation compar-
isons in Table II. From Table II, we find that bicubic
interpolation is the fastest. However, we have to note that bicu-
bic interpolation is optimized in MATLAB, 08’TOG is opti-
mized by an executable software,3 and 11’IPOL4 and 14’TIP5

are speeded up via C language and Cmex, respectively.
Only 10’TIP6 and the proposed method are based on

3http://www.cse.cuhk.edu.hk/~leojia/projects/upsampling/index.html
4http://www.ipol.im/pub/art/2011/g_iics/
5http://www.escience.cn/people/LingfengWang/publication.html
6http://www.ifp.illinois.edu/~jyang29/ScSR.htm
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Fig. 10. Results of Dog (upscaling factor 3) and Field (upscaling factor 3). Compared methods: bicubic interpolation, 08’TOG [53], 10’TIP [71], 11’IPOL [27],
14’TIP [65], and the proposed method.

Fig. 11. Results of Lion with an upscaling factor of 3. Compared methods: bicubic interpolation, 08’TOG [53], 10’TIP [71], 11’IPOL [27], 14’TIP [65],
and the proposed method.

Fig. 12. Compare error maps of the proposed method and five other methods.
The test image is Lion. The error maps are brightened for better visualization.

MATLAB codes that are not optimized. In particular,
computation time with respect to the change of upscaling
factor and image size is shown in Fig. 13. One can observe

that it is acceptable to employ our method for image SR. The
computation time is based on nonoptimized MATLAB code.
It has a lot of room to speed up the code. For instance, the
code contains a lot of loops that can be significantly sped up
using Cmex.

Relation Between Model (20) and Model (20) Combined
With Iterative Strategy: Equation (20) is the proposed model
in this paper. In particular, we employ an iterative strategy
for the proposed model to recover more image details. Thus,
it is necessary to illustrate the relation between model (20)
and model (20) combined with our iterative strategy. Actu-
ally, there is no significant visual difference between the
two methods, especially in image details and edges [see the
almost dark error map in Fig. 14(c)]. However, it is easy to
know that the proposed model (20) combined with the iterative
strategy performs lower RMSE compared with the proposed
model (20). In addition, the iterative strategy results in more
computation obviously.

V. CONCLUSION

Given an LR image, the SR problem was casted as an
image intensity function estimation problem. Because images
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TABLE II

TIME COMPARISON OF DIFFERENT METHODS (BOLD: THE BEST ONE AND UNDERLINE: THE SECOND BEST). COMPARED

METHODS: BICUBIC INTERPOLATION, 08’TOG [53], 10’TIP [71], 11’IPOL [27], 14’TIP [65], AND THE

PROPOSED METHOD. NOTE THAT BICUBIC IS OPTIMIZED IN MATLAB, 08’TOG IS OPTIMIZED BY AN

EXECUTABLE SOFTWARE, AND 11’IPOL AND 14’TIP ARE SPEEDED UP VIA C LANGUAGE

AND CMEX, RESPECTIVELY. ONLY 10’TIP AND THE PROPOSED METHOD ARE BASED

ON MATLAB CODES THAT ARE NOT OPTIMIZED (UNIT: SECONDS)

Fig. 13. (a) Computation time versus upscaling factor for LR image with size 80 × 80. (b) Computation time versus size of LR image. The size of the
LR image is from 40× 40 to 140 × 140, and the upscaling factor is always 5.

Fig. 14. (a) Result of model (20) with the iterative strategy (i.e., τ = 3
in Algorithm 2 and RMSE = 10.25). (b) Result of model (20) without the
iterative strategy (i.e., τ = 1 in Algorithm 2 and RMSE = 10.36). (c) Error
map between (a) and (b). Upscaling factor: 3.

mainly contain smooth components and edges, we assumed
that smooth components belong to 2D thin-plate spline-based
RKHS and edges can be represented by AHFs. The coefficients
of the redundant basis were computed using the LR image.
We then applied the coefficients to generate HR images.
To recover sharp HR images, we proposed an iterative scheme
to preserve more image details. In addition, we applied the
proposed method to image patches to reduce computation

and storage significantly. Many experiments showed that the
proposed approach outperformed the state-of-the-art methods,
both visually and quantitatively.
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