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PCM-TV-TFV: A Novel Two-Stage Framework for Image Reconstruction
from Fourier Data∗
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Abstract. We propose in this paper a novel two-stage projection correction modeling (PCM) framework for
image reconstruction from (nonuniform) Fourier measurements. PCM consists of a projection stage
(P-stage) motivated by the multiscale Galerkin method and a correction stage (C-stage) with an edge
guided regularity fusing together the advantages of total variation and total fractional variation. The
P-stage allows for continuous modeling of the underlying image of interest. The given measurements
are projected onto a space in which the image is well represented. We then enhance the reconstruction
result at the C-stage that minimizes an energy functional consisting of a fidelity in the transformed
domain and a novel edge guided regularity. We further develop efficient proximal algorithms to solve
the corresponding optimization problem. Various numerical results in both one-dimensional signals
and two-dimensional images have also been presented to demonstrate the superior performance of
the proposed two-stage method to other classical one-stage methods.
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1. Introduction. Image reconstruction from Fourier measurements has been a fundamen-
tal problem in various applications, such as magnetic resonance imaging (MRI) [4, 33, 36, 41,
42, 51], ultrasound imaging [19, 59], and synthetic radar imaging [3, 18]. The reconstruction
methods in the literature can be roughly classified into two categories: the discrete models
and the continuous ones. The discrete models view the underlying image as a discrete vector
with certain fixed resolution and usually obtain its approximation through solving a discrete
optimization problem consisting of a fidelity term and a regularity term. There are various
regularity terms used in the literature, such as total variation (TV) [47, 53], total generalized
variation [11, 38], and total fractional variation (TFV) [16, 17, 63]. Moreover, many efficient
algorithms such as the alternating direction method of multipliers (ADMM) and primal-
dual methods have been proposed [7, 8, 9, 31, 48, 49, 60, 66] to solve corresponding op-
timization problems. On the other hand, the continuous models consider the underlying
image as a piecewise smooth function and recover the image from a function approximation
point of view. One of its advantages is the flexibility in setting resolution and it has been
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PROJECTION CORRECTION BASED IMAGE RECONSTRUCTION 2251

successfully employed in the reconstruction of super-resolution images [13, 24]. It has also been
shown to have superior performance in generalized/infinite-dimensional compressive sensing
reconstruction [1, 2].

Image reconstruction has usually been formulated as an optimization problem that mini-
mizes an energy functional in the following form:

minL(x) +R(x),

where L(x) is a fidelity term depending on an empirical estimation of the distribution of noise,
and R(x) is a regularity term with a prior estimation of the structure of the underlying image.
For instance, L(x) is often a least squares term while the noise is assumed to be Gaussian, and
other formulations could also be found in [39]. On the other hand, a widely used regularity
term R(x) is the l1 type constraint incorporating certain sparsity prior knowledge. Such
sparsity may come from edge estimation [12, 35, 40], wavelet transformation [20, 26, 55, 64],
different orders of TV [11, 15, 21, 63], etc.

Most of existing methods solve the above optimization problem with various fidelity terms
and regularity terms in either continuous or discrete settings. We will refer to them as one-
stage methods in this paper. We will leverage both discrete and continuous models to develop
two-stage projection correction modeling (PCM), in which the first stage (P-stage) employs
a continuous model and the second stage (C-stage) imposes a discrete regularization/penalty
term on the model. In particular, for image reconstruction from Fourier measurements, we
will later show in numerical experiments that the proposed two-stage PCM has a superior
performance compared with other popular one-stage methods.

We demonstrate the idea of PCM with a reconstruction problem. The given data are
some finite uniform or nonuniform Fourier measurements. The goal is to reconstruct the un-
derlying image from these measurements. At the P-stage, we consider the underlying image
as a function f in a processing domain that is usually a Hilbert space spanned by some basis
such as polynomials or wavelets. We will find an “optimal” approximation (projection) in the
processing domain by minimizing a certain data fidelity term. In other words, the P-stage
projects the Fourier (k-space) measurements into another processing domain that has an ac-
curate representation of the underlying function. We also point out that the P-stage could
also be viewed as a dimension reduction step, since we often choose a projection on a much
lower dimension subspace. It will also help to reduce the computational time at the second
stage. Due to the noise in the measurements and/or imperfect selection of the basis, the
approximation in the P-stage will also contain errors. To further improve the reconstruction,
we will impose a discrete regularization at the C-stage.

At the C-stage, we will find a “corrected” approximation in the same processing domain
by minimizing the sum of a date fidelity term and a regularity term. The data fidelity is the
difference between the corrected approximation and the approximated function obtained at
the P-stage. On the other hand, we will employ a regularity term on the discrete vector that is
the evaluation of the corrected approximation function on discrete grids. In particular, we will
consider a hybrid regularity combining TV and TFV. The TV regularization has very good
performance in keeping edges in the reconstruction but suffers from the staircase artifact which
causes oil-painted blocks. It is mainly due to the fact that TV is a local operator. On the other
hand, the TFV is a recent proposed regularization term in image processing and has achievedD
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2252 WEIHONG GUO, GUOHUI SONG, AND YUE ZHANG

promising results [16, 17, 44, 58, 63, 65]. The TFV is based on fractional order derivatives
which are generalizations of the integer derivatives. It can be derived from Abel’s integral
equation and more details can be found in [32, 45]. Imposing TFV could reduce the staircase
artifact due to its nonlocal nature. However, the edges are damped in the reconstructed image
based on TFV regularization. Therefore, we will adopt a hybrid regularity with TV on the
“edges” and TFV on the “smooth” part.

We remark that edge detection becomes an important task in our method, since we will
not know where the true edges are before we proceed. We would like to mention that there is
another research pipeline in multimodality image reconstruction where computed tomography
(CT) and MRI scanning would be run at the same time and CT images are used to enhance
the performance of MRI as well as reduce the processing time [10, 22, 37, 40]. The set of edges
will be given since the CT is much faster than MRI. However, we consider a more challenging
task in this paper where the edges are not known and will be reconstructed recursively in our
algorithm.

We briefly summarize our contributions below:
(1) We propose a novel two-stage PCM method of image reconstruction that leverages

advantages of both discrete and continuous models.
(2) We introduce a novel regularity that uses TV and TFV adaptively.
(3) We employ a precise and efficient edge based variational constraint in the regularity

term, while the edge is determined through combining techniques of image morphology
and thresholding strategy.

(4) We develop an efficient proximal algorithm for solving the proposed model.
The rest of the paper is organized as follows. We introduce the proposed PCM framework

for image reconstruction from Fourier measurements in section 2. We develop in section 3 an
efficient proximal algorithm for the general PCM model and further employ it to derive an
algorithm for a specific PCM-TV-TFV model. Numerical experiments and comparisons are
presented in section 4. We finally make some concluding remarks in section 5.

2. Projection correction modeling. We will present the proposed PCM framework for
image reconstruction from Fourier measurements in this section. To this end, we first give a
brief introduction of the image reconstruction problem.

Suppose the underlying image is a real-valued function f : Ω → R, where Ω ⊆ R2 is a
bounded domain of the image. We are given its Fourier data f̂ in the following form:

f̂ = SFf + ε,(1)

• S is the sampling operator (might be uniform or nonuniform),
• F is the continuous Fourier transform as

Ff(w) =
∫

R2
f(x) exp(−2πiw · x)dx,

• ε ∈ Cm is random noise.
Our goal is to recover the underlying image f from the given Fourier data.

The challenges come from the nonuniformness of S as well as the appearance of the noise ε.
It is well received that most images are piecewise smooth with potential jumps around theD
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PROJECTION CORRECTION BASED IMAGE RECONSTRUCTION 2253

Figure 1. General PCM framework.

edges. The inverse Fourier transform will not work directly here. The nonuniformness of the
samples in the frequency domain (k-space) will make the inverse process unstable and might
bring extra approximation errors when the sampled data contain noise. Moreover, the Fourier
basis is amenable to Gibbs oscillations artifacts in representing a piecewise smooth function.
To overcome such challenges, we will propose a two-stage PCM framework below.

We point out that the PCM framework can be viewed as a generalization of the classical
multiscale Galerkin method in finite element analysis. In contrast to the classical triangle or
polyhedron mesh segmentation in a single scale, the region has elements in different scales.
The advantage of doing so is to increase the numerical stability of the solver. More details
can be found in chapter 13 of [30].

We present the general idea of such a PCM framework in Figure 1. We shall next introduce
the P-stage and the C-stage in the PCM framework with more details.

2.1. The P-stage. Suppose {φ1, φ2, . . . , φn} is a basis of a subspace of the processing
domain and we will find an “optimal” approximation

f̃ =
n∑
j=1

(cf )jφj ,
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2254 WEIHONG GUO, GUOHUI SONG, AND YUE ZHANG

where its coefficient cf is obtained through solving the following least squares problem:

cf = argmin
c
‖SFΦc− f̂‖22,(2)

where Φc =
∑n

j=1 cjφj . The above least squares problem could be solved efficiently by
conjugate gradient solvers.

The performance of the P-stage depends on the selection of the basis {φi}ni=1 according
to the prior knowledge of the property of the image. We point out that the above framework
has also been used in [29, 55] for approximating the inverse frame operator with admissible
frames. Analysis of the approximation error has also been discussed there. In particular,
the Fourier basis has been used to obtain a stable and efficient numerical approximation of
a smooth function from its nonuniform Fourier measurements. However, the Fourier basis
might not be appropriate to represent a piecewise smooth function. Instead, we will consider
wavelets including classical ones such as the Haar or Daubechies wavelet or more recent ones
such as curvelet [43, 56] or shearlet [27, 34], which have a more accurate representation for
piecewise smooth functions. In this regard, it could also be viewed as a generalization of
the admissible frame method in [29, 55]. In this paper, one-dimensional (1D) and 2D Haar
wavelets are used in the numerical experiments, but the general PCM framework could also
work with other wavelets.

We remark that even with a reasonable selection of basis {φi}ni=1, cf from (2) might not
be accurate due to the noise in the data. We proceed to improve it in the correction stage to
alleviate those effects.

2.2. The C-stage. We will find a “corrected” approximation

g =
n∑
j=1

(cg)jφj

in the same processing domain through solving the following regularization optimization
problem:

min
cg

1
2
‖cg − cf‖22 +R(cg),

where R(cg) imposes prior knowledge based on the understanding of the processing domain.
The idea is to find a new set of coefficients that are close to cf found in the P-stage such that
the new approximation satisfies some regularities. In terms of optimization, it provides the
proximal guidance during the algorithm implementation.

2.2.1. TV-TFV regularity. We next discuss the choice of the regularity term R(cg). One
popular choice in the literature uses ‖cg‖1 by assuming the underlying function has a sparse
representation in the processing domain. However, it might not be the best choice for the
problem of image reconstruction from Fourier measurements. It does not incorporate the
property of images that are piecewise smooth and contain many textures/features. Moreover,
it might have the bias issue in statistics literature that involves the modeling error brought by
imperfect selection of basis {φi}ni=1; e.g., see [28, chapters 5 and 7]. That is, a regularity termD
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PROJECTION CORRECTION BASED IMAGE RECONSTRUCTION 2255

on the coefficients ‖cg‖1 might not be the best choice for alleviating the bias issue. Instead,
we impose regularization in image/function values on a discrete grid through some prior
knowledge about the underlying images such as the piecewise smoothness or textures/features.
In particular, we shall employ a regularity that combines TV and TFV. To this end, we first
review some definitions and notation of fractional order derivatives.

We point out that there are several definitions of fractional order derivatives, such as
Riemann–Liouville (RL), Grunwald–Letnikov, and Caputo. We will employ the RL definition
[32, 45] in this paper. The left, right, and central RL derivatives of order α ∈ (n−1, n), n ∈ N,
for a function f(x) supported on an interval [a, b], are defined by

aD
α
xf(x) =

1
Γ(n− α)

dn

dxn

∫ x

a
(x− τ)n−α−1f(τ)dτ,

xD
α
b f(x) =

(−1)n

Γ(n− α)
dn

dxn

∫ b

x
(τ − x)n−α−1f(τ)dτ,

and

aD
α
b f(x) =

1
2

(aDα
xf(x) + xD

α
b f(x) · (−1)n),

where Γ(α) is the Euler’s Gamma function

Γ(α) =
∫ ∞

0
tα−1e−tdt.

We next introduce the discretization of the RL fractional derivative. For simplicity of
presentation, we will show the 1D discretization over an interval [a, b]. The discretization over
a 2D regular domain will be a direct generalization of this procedure along horizontal and
vertical directions. We consider the following n equidistant nodes on [a, b]:

xi =
(i− 1)(b− a)

n
+ a, i = 1, 2, . . . , n.

Let L(α) and R(α) be the matrix approximations of the left- and right-sided RL α-order
derivative operator aDα

x and xD
α
b accordingly. With Dirichlet boundary conditions that f(a) =

f(b) = 0, it follows [50] that L(α) and R(α) are two triangular strip matrices with the following
structure:

L(α)
n = n



wα0 wα1 · · · · · · wαn−1 wαn

0 wα0 wα1
. . . . . . wαn−1

0 0
. . . . . . . . .

...
...

. . . . . . wα0 wα1
...

0
. . . . . . 0 wα0 wα1

0 0 · · · 0 0 wα0
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2256 WEIHONG GUO, GUOHUI SONG, AND YUE ZHANG

and

R(α)
n = n



wα0 0 0 · · · 0 0

wα1 wα0 0
. . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . wα0
. . . 0

wαn−1
. . . . . . wα1 wα0 0

wαn wαn−1 · · · · · · wα1 wα0


,

where wα0 = 1, wαj = (−1)j
(
α
j

)
. These coefficients then can be constructed iteratively:

wαj =
(

1− 1 + α

j

)
wαj−1, j = 1, 2, . . . , n.

Furthermore, when α ∈ (1, 2), the matrix approximation of the central RL derivative C(α)

will then become

C(α)
n =

1
2

(L(α) +R(α)).

Let U ∈ RN be the given discretized image u under an ordinary xy-coordinate with pixel
values lexicographically ordered in a column vector. For simplicity, we assume that the original
image u is square with n =

√
N rows and columns. Let ⊗ denote the Kronecker product. It

follows from applying the central RL derivative C(α) to the images along the x-direction that

u(α)
x = (In ⊗ C(α)

n )U,

where In ∈ Rn×n is the identity matrix. Similarly, along the y-direction we will have

u(α)
y = (C(α)

n ⊗ In)U.

The procedure will be the same for other choices of L(α)
n and R(α)

n . The l1 norm regularization
over u(α)

x and u
(α)
y leads to the TFV models [63].

We remark that even though C
(α)
n is a dense matrix, the matrix In ⊗ C(α)

n will be sparse.
Furthermore, we observe that wαj decays very fast. For example, take α = 1.3, the first few
wj ’s,

w0 = 1, w1 = −1.3, w2 = 0.195, w3 = 0.0455,
w4 = 0.0493, w5 = 0.01, w6 = 0.006 · · · .

To further enhance the sparsity of the operation matrix, one can truncate wj ’s at a certain
level to improve the efficiency of the program.

We are now ready to introduce the C-stage in the following form:

min
cg

1
2
‖cg − cf‖22 + µt‖∇g|Γ‖1 + µf‖∇αg|Γc‖1(3)

s.t. g = Φcg.(4)

where Γ is an open domain centered around the edge part of the image and∇α is the discretized
α-order fractional differential operator.D

ow
nl

oa
de

d 
04

/3
0/

18
 to

 1
29

.2
2.

12
4.

59
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROJECTION CORRECTION BASED IMAGE RECONSTRUCTION 2257

We point out that an important question in the above model (3) is to select the Γ set.
It denotes an open region centered around the edges rather than the edges themselves. The
reason is that the set of edges has zero measure in R2 and it will not be very meaningful to
consider the 2D total (fractional) variation on that.

2.2.2. Construction of the Γ set. We shall next discuss the construction of the Γ set.
We first detect the edges of the image reconstructed from the P-stage. In order to obtain
accurate edges, our approach is to find a rough estimation at the initial step and then update
it iteratively with the reconstructed image during the implementation of the reconstruction
algorithm. Specifically, we use the first few iterations of the TV model [53] as a warm start to
obtain an initial estimate of the edges. Meanwhile, we take an early termination in such an
iterative method to avoid staircase artifacts. We then apply these filter edge detectors such
as Sobel, Canny, and Prewitt filters [14, 23, 57] on the initial result to improve the accuracy
of the edges.

Once the edges are obtained, an initial Γ set can be easily constructed via morphologic
dilation [54]; see Figure 2 for a visual illustration. The original image is a binary valued image.
This operation converts the neighborhood of 0’s of the question mark to all 1’s. For all the
numerical experiments, the converted neighborhood width is set to be 5 pixels.

We then update the Γ set through a few iterations of the previous results. We next discuss
the update of the Γ set in more detail. We denote the Γ set obtained at the ith iteration by
Γi. When estimating Γk, we use the previous Γi’s,

Γk = round

(
1

k − 1

k−1∑
i=1

Γi

)
,

where round(·) is the standard round function that returns the closest integer. This is to
ensure that Γk will be a binary matrix. A more general thresholding scheme with a given
distribution D at a certain confidence level t ∈ [0, 1) will be

(a) Original Image

	
(b) Dilated Image

Figure 2. Illustration of image dilation.
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Γk =

k−1∑
i=q

wiΓi > t


for some 1 ≤ q ≤ k − 1, q ∈ N+, wi ∼ D, wq ≤ wq+1 ≤ · · · ≤ wk−1,

∑k−1
i=q wi = 1.

We could further reduce the computational cost by thresholding on the number of iterations.
We point out that the reconstructed image will become more accurate during the iterations
of the algorithm and there will be little variance in the detected edges after certain iterations.
That is, it is reasonable to use a small number of iterations in edge detection.

We summarize the procedure for reconstructing the initial Γ set as follows:
(1) Warm up and edge detection.

(a) Run the TV model for a few iterations (in our experiment 3 ∼ 5 will be
enough). This depends on a rough estimate of the noise level. A quick noise
variance estimation can be found at [52].

(b) Use an implement filter based edge detector such as Canny or Sobel filters to
detect the edge set.

(2) Obtain Γ through image dilation.
The Γ set is updated as the underlying image is iteratively updated.

2.3. PCM-TV-TFV in image denoising. We shall summarize the P-stage and the C-stage
to present the complete process of the two-stage PCM-TV-TFV model as follows:

P : cf = argmin
c
‖SFΦc− f̂‖22,

C : min
cg

1
2
‖cg − cf‖22 + µt‖∇g|Γ‖1 + µf‖∇αg|Γc‖1

s.t. g = Φcg,

(5)

where Γ is an open domain centered around the edges.
We will demonstrate the advantages of the above proposed two-stage model through nu-

merical comparisons with other popular models later.

3. Algorithms. In this section we shall develop a proximal algorithm scheme for solving
the general PCM optimization problem. Moreover, we will also introduce a split Bregman
scheme [31] for solving the TV-TFV regularity problem. We will then combine them to derive
a specific algorithm for the PCM-TV-TFV model.

3.1. General PCM model solver. We shall first consider the following general PCM model
with a general regularity term R:

P :cf = argmin
c
‖SFΦc− f̂‖22,

C : min
cg

1
2
‖cg − cf‖22 +R(cg).

We will introduce a general proximal algorithm for solving the above PCM optimization
problem. We remark that the proximal algorithms refer to a class of algorithms that are
widely used in modern convex optimization literature; for a comprehensive survey, see [49].D
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To this end, we first review the definition of the proximal operator: for a convex function R,
the proximal operator prox [49] is defined as

proxλR(v) = argmin
c

{
R(c) +

1
2λ
‖c− v‖22

}
.

We point out that computing the proximal operator is equivalent to solving a trust region
problem [25, 49]. Moreover, we could derive closed forms of such proximal operators for many
popular functions. For example, if R(c) = cTAc for some symmetric positive semidefinite
matrix A, then

proxλR(v) = (A+ 1/λI)−1v/λ.

If R(c) = ‖c‖1, we have

(proxλR(v))i =


vi − λ if vi > λ,

vi + λ if vi < −λ,
0 |vi| ≤ λ,

which is the componentwise soft thresholding operator. Throughout the rest of the paper, we
will use proxλ(v) to denote this soft thresholding operation.

Consequently, we present an efficient proximal algorithm in Algorithm 1 for solving the
general PCM optimization problem, based on Nesterov’s accelerated gradient method as well
as the FISTA algorithm [6, 9, 46].

We observe that Algorithm 1 involves a linear program and an iterative proximal operator
evaluation problem. Both of them can be computed very efficiently. The update step for λk

is taken from the FISTA algorithm [6, 9, 46], which will accelerate the convergence.

Algorithm 1. Accelerated proximal algorithm.

Input: f̂ , Φ, c0
g, d0, λ0

Output: Reconstructed image g
1: P-stage: Construct SFΦ from (2), solve cf = (SFΦ)†f̂ .
2: C-stage:
3: Initialize c0

g = cf , k = 0.
4: while rela err > ε do
5: k = k + 1;
6: λk = k

k+3 ;
7: ckg = proxλkR(dk − λk(dk − cf ));
8: dk+1 = ckg + λk(ckg − ck−1

g );
9: rela err = ‖ckg − ck−1

g ‖2/‖ck−1
g ‖2;

10: end while
11: Construct g = Φckg .
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3.2. TV-TFV regularity solver. In this subsection we shall consider the following TV-
TFV regularity problem:

min
f

1
2
‖f − f̃‖2 + µt‖∇f |Γ‖1 + µf‖∇αf |Γc‖1,(6)

where Γ again is an open domain centered around the “edge” set. If µf is set to be 0 and the
width of Γ is large enough, the above model will reduce to the classical TV denoising model,

min
f

1
2
‖f − f̃‖2 + µt‖∇f‖1.

Similarly, if Γ is set to be ∅, it will become the TFV model,

min
f

1
2
‖f − f̃‖2 + µf‖∇αf‖1.

We remark that this model is used in the image denoising problem. The workflow of the image
denoising problem with TV-TFV regularization is summarized in Figure 3.

We shall introduce an algorithm for solving the above TV-TFV regularization problem.
We will start with a warm-up procedure to get an estimate of the edge regions. We will
then employ the split Bregman method [31, 62] to derive the algorithm. We present it in
Algorithm 2.

We will demonstrate that the proposed TV-TFV regularization at the C-stage has a su-
perior performance by numerical comparisons with the TV denoising model and the TFV
denoising model in section 4.

3.3. PCM-TV-TFV solver. We now present an algorithm for solving the PCM-TV-TFV
model (5) for image reconstruction in Algorithm 3. It follows from a direct application of
ADMM [9].

Figure 3. Illustration of the TV-TFV regularization scheme in the image denoising problem.
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Algorithm 2. TV-TFV denoising algorithm.

Initialize Γ̄0 = Ω, f1 = f̃ , confidence level t, length of stored sequence n.
2: Warm up with 3 ∼ 5 TV iterations and update Γ̄0 to Γ̄1.

for k = 1, 2, . . . do
4: if k > n then

Γ̄k =
(∑k

i=k−n+1 Γ̄i
)
> n ∗ t;

6: end if
Update Γk = dilate(Γ̄k);

8: Update dk = ∇f |Γk
, ek = ∇αf |Γc

k
.

Solve f -subproblem

fk+1 = argmin
f

1
2
‖f − f̂‖22 + µt‖∇f |Γk

− dk + ddk‖22

+µf‖∇αf |Γk
− ek + eek‖22

10: d-subproblem

dk+1 = proxµt/λt

(
∇fk+1|Γk

+ ddk
)

dd-subproblem

ddk+1 = ddk + γ1

(
∇fk+1|Γk

− dk+1
)

12: e-subproblem

ek+1 = proxµf/λf

(
∇αf |Γk

+ eek
)

ee-subproblem

eek+1 = eek + γ2

(
∇αf |Γk

− ek+1
)

14: if ‖fk+1 − fk‖2/‖fk‖2 < ε then
break

16: end if
end for

4. Numerical experiments. In this section we demonstrate the superior performance of
our proposed two-stage PCM framework for image reconstruction from Fourier measurements.
In particular, we will use numerical experiments to show that

(1) the projection step itself can achieve accurate recovery in the case without noise and
bias error;

(2) the projection correction with TV regularity (PCM-TV) has a better performance
than many of the state-of-the-art continuous models;
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Algorithm 3. PCM-TV-TFV algorithm.

Input: f̂ , Φ, d0, λ0

Output: Reconstructed image g
P-stage: Construct SFΦ from (2), solve cf = (SFΦ)†f̂ .

2: C-stage: Initialize Γ̄0 = Ω, confidence level t, length of stored sequence n.
Warm up with 3 ∼ 5 TV iterations and update Γ̄0 to Γ̄1.

4: for k = 1, 2, . . . do
if k > n then

6: Γ̄k =
(∑k

i=k−n+1 Γ̄i
)
> n ∗ t;

end if
8: Update Γk = dilate(Γ̄k);

Update dk = ∇(Φckg)|Γk
, ek = ∇α(Φckg)|Γc

k
.

10: Solve cg-subproblem

ck+1
g = argmin

cg

1
2
‖cg − cf‖22 + µt‖∇(Φcg)|Γk

− dk + ddk‖22

+µf‖∇α(Φcg)|Γk
− ek + eek‖22

d-subproblem

dk+1 = proxµt/λt

(
∇
(

Φck+1
g

)
|Γk

+ ddk
)

12: dd-subproblem

ddk+1 = ddk + γ1

(
∇
(

Φck+1
g

)
|Γk
− dk+1

)
e-subproblem

ek+1 = proxµf/λf

(
∇α
(

Φck+1
g

)
|Γk

+ eek
)

14: ee-subproblem

eek+1 = eek + γ2

(
∇α
(

Φck+1
g

)
|Γk
− ek+1

)
if ‖ck+1

g − ckg‖2/‖ckg‖2 < ε then
16: break

end if
18: end for

(3) the TV-TFV regularity leads to better results in image denoising;
(4) the projection correction with TV-TFV regularity (PCM-TV-TFV) model further im-

proves the results of the PCM-TV.
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Figure 4. Illustration of jittered and uniform sampling schemes.

We will focus on the function reconstruction from nonuniform measurements. In partic-
ular, we consider the jittered sampling in the frequency domain. That is, we assume the
sampling is taken at the following frequencies:

wk = k + ηk, ηk ∼ U [−θ, θ], k = −m
2
, . . . ,

m

2
− 1.

We display an example of the jittered sampling in Figure 4. All the experiments were run
with MATLAB R2015b on a PC with an Intel i7-3820 3.60 GHz CPU and 16.0 GB RAM.

4.1. Accurate recovery of the P-stage. We will use a simple example to demonstrate
the accurate recovery of the P-stage when there is no noise and no bias error in the model. For
a selected processing domain Hn = span{φi}ni=1, we say it has no bias error if the underlying
function f ∈ Hn.

We will use the classical Haar wavelets in the processing domain. In the 1D case, the
mother wavelet ψ(x) is

ψ(x) =


1 if 0 ≤ x < 1/2,
−1 if 1/2 ≤ x < 1,
0 otherwise,

and its descendants are ψn,k = 2n/2ψ(2nx − k), k = Z, x ∈ [0, 1). The 2D Haar wavelet is
formulated by simple cross-product.

We consider the following piecewise constant test function:

f(x) =



−1/2 if − 1/8 ≤ x < 1/4,
1 if 1/4 ≤ x < 1/2,
−1 if 1/2 ≤ x < 5/8,
1/2 if 5/8 ≤ x < 3/4,
0 otherwise.

One can verify that the support of this test function is a subset of that of the selected
Haar wavelets. Figure 5 shows that our proposed projection stage achieves a very accurate
recovery for noiseless case.D
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(a) Projection (b) Truncated Fourier

(c) Proposed (d) Difference

Figure 5. Bias-free reconstruction for piecewise constant signal without noise: (a) Ground truth signal and
its projection on Hn. (b) Reconstruction from truncated Fourier series which suffers from Gibbs oscillation.
(c) Reconstruction from projection stage. Here m = 128, n = 32, resol = 1/256, θ = 0.25. (d) The difference
between the reconstruction and the ground truth.

4.2. PCM-TV model. We consider in this subsection the case where the reconstruc-
tion contains bias error. In other words, the underlying function does not lie in the finite-
dimensional subspace spanned by the chosen basis. We will consider the following piecewise
linear test function f(x):

f(x) =



1 if 1/16 ≤ x < 1/8,
−1/2 if 1/8 ≤ x < 1/4,
1 if 1/4 ≤ x < 1/2,
−8

3x+ 7
3 if 1/2 ≤ x < 7/8,

0 otherwise.

We will use the same Haar wavelets to construct the processing domain. Figure 6 displays
the bias error.D

ow
nl

oa
de

d 
04

/3
0/

18
 to

 1
29

.2
2.

12
4.

59
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROJECTION CORRECTION BASED IMAGE RECONSTRUCTION 2265

(a) (b)

Figure 6. (a) Piecewise linear function (red) and its projection onto Hn, n = 128 (blue). (b) The difference
between the two.

Suppose we are given m = 256 nonuniform Fourier measurements with some added Gaus-
sian noise ε at various noise levels σ = ‖ε‖2/‖f̂‖∞.

We will use TV as the regularity at the C-stage of our two-stage PCM method and call
it PCM-TV. Moreover, we will compare the proposed two-stage PCM-TV with the following
popular one-stage method with different regularities:

• `1 regularization model,

min
c

1
2
‖SFΦc− f̂‖22 + λ‖c‖1;

• Tikhonov regularization model,

min
c

1
2
‖SFΦc− f̂‖22 + λ‖c‖22;

• single-stage TV (SS-TV) model,

min
c

1
2
‖SFΦc− f̂‖22 + λ‖∇Φc‖1.

In particular, we will compare them in terms of a few different performance measurements
including structural similarity (ssim) [61], peak signal-to-noise ratio (psnr), signal-to-noise
ratio (snr), and relative error (rela err) defined as follows:

psnr = 10 log10
d1d2(maxi,j uij)2

‖u− û‖2F
,

snr = 10 log10
‖mean(û)− u‖2F
‖û− u‖2F

,

rela err =
‖u− û‖2
‖u‖2

,
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Table 1
Numerical comparison of the different models on different noise level.

σ Model ssim psnr snr rela err
0.1 Proposed 0.9283 39.14 33.58 0.0161

`1 regularization 0.8478 36.45 30.88 0.0220
SS-TV 0.8466 35.72 30.16 0.0239
Tikhonov 0.7640 32.17 26.60 0.0360

0.4 Proposed 0.8505 29.41 23.84 0.0495
`1 regularization 0.7092 26.21 20.64 0.0715
SS-TV 0.6830 23.81 18.24 0.0942
Tikhonov 0.3041 21.09 15.52 0.1289

0.7 Proposed 0.7096 24.87 19.30 0.0834
`1 regularization 0.6221 21.93 16.36 0.1170
SS-TV 0.6816 22.60 17.03 0.1083
Tikhonov 0.1414 15.51 9.951 0.2445

(a) Ground Truth (b) SS-TV (c) PCM-TV

Figure 7. Reconstruction comparison with bias error for the 2D image. Here m = 128× 128, n = 64× 64,
imsize = 256× 256, σ = 0.6.

where u ∈ Rd1×d2 is the true image and û ∈ Rd1×d2 is the reconstruction. We present the
numerical results in Table 1.

We can observe from Table 1 that our proposed PCM-TV has a better performance than
all three other one-stage methods.

We next consider the 2D case. We will consider the 2D function f with a randomly chosen
square support of [0.25, 0.5]2 ∪ [0.61, 0.83]2 under where the entire image region is defined as
[0, 1]2. We display it in Figure 7. The 2D Haar wavelet used here is a direct product of the
1D Haar wavelet leading to H2

n := Hn ⊗Hn.
In particular, we will use a piecewise constant test function whose support does not lie in

H2
n. It consists of four squares and the white ones do not lie in Hn, which will cause the bias

error in reconstruction.
We will compare the proposed PCM-TV model with the SS-TV method. We point out that

TV regularization usually yields better results than `1 regularization and `2 regularization inD
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Table 2
Numerical details for the 2D reconstruction in Figure 7 with bias error, σ = 0.6.

Model psnr snr rela err time(s)
SS-TV 33.8196 20.87 0.086 10.8
PCM-TV 35.6589 22.7092 0.069 11.0

Table 3
Numerical results for brain image denoising with different regularities.

Model psnr snr rela err
Noisy 20.9199 6.0853 0.3914
TV 31.0007 16.1661 0.1226
TFV 31.6910 16.8565 0.1133
TV-TFV 32.1948 17.3602 0.1069

the 2D imaging problem. We present the corresponding numerical results and computational
time of the split Bregman iterations in Table 2.

We could observe from the above numerical results that the two-stage PCM-TV has a
better performance than the SS-TV regularization method. We next explain the differences
between them. We point out that the two-stage PCM-TV model is equivalent to the following
optimization problem:

min
cg

1
2
‖cg −A†f̂‖2 + λR(cg),

where A = SFΦ andR is the TV operator. The corresponding first order optimality condition
(from Fermat’s rule [5]) implies that

0 ∈ cg −A†f̂ + λ∂R(cg),(7)

where ∂R denotes the subdifferential of R. On the other hand, for the SS-TV model

min
cg

1
2
‖Acg − f̂‖2 + λR(cg),

the first order condition implies that

0 ∈ cg −A†f̂ + λ(A∗A)−1∂R(cg).(8)

Compared with (7), the descent direction in (8) is distorted by the factor (A∗A)−1. It might
not only cause extra computational cost but also bring numerical instability and extra errors
in computing the inverse of A∗A.

4.3. Performance of TV-TFV regularity. In this subsection we demonstrate the advan-
tages of the proposed TV-TFV regularity. We consider the following general image denoising
problem:

min
u

1
2
‖u− û‖22 + λR(u),
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(a) Noisy (b) Anisotropic TV

(c) TFV, α = 1.3 (d) TV-TFV, α = 1.3

Figure 8. Denoising results for models with different regularities. Here α denotes the fractional order of
the derivative in the TFV model.

where û is the given noisy image. We will compare three different regularities in the above
model: TV, TFV, and TV-TFV.

We display the noisy image and the reconstructed images from these three denoising
methods in Figure 8.1 To better understand the performance, we zoom in on the selected
parts of the image and display them in Figure 9.

We observe that the anisotropic TV suffers from the staircase artifact due to the fact that
the TV is a local operator. On the other hand, the reconstruction with TFV regularity has a
blurry effect on the edges. This is not surprising because the TFV is a nonlocal method and
it is less edge sensitive than TV. Instead, the TV-TFV regularity avoids such artifacts and
has a better reconstruction of both the edges and the overall image.

We also present the numerical results of different performance measurements in Table 3.
The TV-TFV regularity shows better results in such measurements as well.

4.4. PCM-TV-TFV versus PCM-TV. Finally, we will combine the projection stage and
the correction stage with TV-TFV regularity instead of TV regularity to further improve the
performance.

1Image retrieved from http://radiopaedia.org/ by Frank Gaillard.D
ow

nl
oa

de
d 

04
/3

0/
18

 to
 1

29
.2

2.
12

4.
59

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PROJECTION CORRECTION BASED IMAGE RECONSTRUCTION 2269

(a) Ground Truth (b) Anisotropic TV

(c) TFV (d) TV-TFV

Figure 9. Detailed comparison between different models.

Table 4
Numerical results for denoising with different regularities.

Model psnr snr rela err time(s)
PCM-TV 23.1515 20.4278 0.0952 12.3
SS-TV-TFV 24.1506 21.1566 0.0875 37.1
PCM-TV-TFV 25.3128 21.9563 0.0798 24.4

We display the ground truth image and the reconstructed images from various methods
in Figure 10, including the inverse Fourier method, the PCM-TV method, the PCM-TV-TFV
method, and the SS-TV-TFV method. We point out that the optimization parameters λ, µt,
and µf of the above models are all selected to achieve the best performance empirically.

We point out that the noisy image in Figure 10 is obtained directly by the inverse Fourier
transform and we can see that the noise level is quite high in this case. All the PCM-TV,
SS-TV-TFV, and PCM-TV-TFV models are able to produce more reasonable visual results.
To see a deep comparison, we zoom in on the red square part of Figure 10 and present the
approximation errors in Figure 11.

The numerical results are shown in Table 4. We can observe that the proposed PCM-TV-
TFV has a better performance than SS-TV-TFV in both accuracy and efficiency. Due to the
extra effort of computing the TFV term, it takes more time than the PCM-TV method, but
it obtains a much better accuracy.D
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(a) Ground Truth (b) Noisy

(c) PCM-TV (d) SS-TV-TFV (e) PCM-TV-TFV

Figure 10. Reconstruction comparison between PCM-TV, SS-TV-TFV, and PCM-TV-TFV. Noisy image
(b) is obtained from inverse Fourier transform. Here m = 128×128, n = 96×96, imsize = 256×256, σ = 0.4.

(a) Groud Truth (b) PCM-TV

(c) SS-TV-TFV (d) PCM-TV-TFV

Figure 11. Zoomed-in comparison of the red square in Figure 10. Figure (a) is the true surface. Figure (b)
shows the difference between the truth and the one reconstructed by PCM-TV. Relative error ≈ 62%. Figure
(c) shows the difference between the truth and the reconstruction by SS-TV-TFV. Relative error ≈ 38%. Figure
(d) shows the difference between the truth and the one reconstructed by PCM-TV-TFV. Relative error ≈ 32%.D
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5. Conclusions. In this paper we propose a general two-stage PCM framework for image
reconstruction from Fourier measurements. The projection step alleviates the instability from
the nonuniformness of the Fourier measurements and the correction step further reduces the
noise and the bias effects in the previous step. A precise edge guided TV-TFV regularity
shows its own advantages over the models with single TV or TFV regularity. The numerical
experiments demonstrate that such a combination enhances the reconstruction and reduces
the drawbacks of the TV and TFV themselves. Furthermore, we also show that the proposed
PCM-TV-TFV has a superior performance even when the measurements have considerably
heavy noise.

We assume that we have some a priori information of an appropriate basis for represent-
ing the underlying image. For example, wavelets might be good choices for approximating
natural images. A poor choice of basis would lead to a large error in the P-stage. However,
the regularization process at the C-stage would alleviate this error to some extent instead of
aggravating it. Throughout the paper we only use Haar wavelets to demonstrate the advan-
tages of the proposed two-stage PCM method in the numerical experiments. However, other
bases such as shearlets, curvelets, or adaptive wavelets could also be incorporated to further
improve the results. Moreover, the proposed two-stage framework for Fourier measurements
could also be extended to other linear measurements such as the Radon transform, etc.
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