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A Rapid and Robust Numerical Algorithm for Sensitivity
Encoding with Sparsity Constraints: Self-Feeding
Sparse SENSE

Feng Huang,1* Yunmei Chen,2 Wotao Yin,3 Wei Lin,1 Xiaojing Ye,2

Weihong Guo,4 and Arne Reykowski1

The method of enforcing sparsity during magnetic resonance
imaging reconstruction has been successfully applied to par-
tially parallel imaging (PPI) techniques to reduce noise and ar-
tifact levels and hence to achieve even higher acceleration
factors. However, there are two major problems in the exist-
ing sparsity-constrained PPI techniques: speed and robust-
ness. By introducing an auxiliary variable and decomposing
the original minimization problem into two subproblems that
are much easier to solve, a fast and robust numerical algo-
rithm for sparsity-constrained PPI technique is developed in
this work. The specific implementation for a conventional Car-
tesian trajectory data set is named self-feeding Sparse Sensi-
tivity Encoding (SENSE). The computational cost for the
proposed method is two conventional SENSE reconstructions
plus one spatially adaptive image denoising procedure. With
reconstruction time approximately doubled, images with a
much lower root mean square error (RMSE) can be achieved
at high acceleration factors. Using a standard eight-channel
head coil, a net acceleration factor of 5 along one dimension
can be achieved with low RMSE. Furthermore, the algorithm
is insensitive to the choice of parameters. This work improves
the clinical applicability of SENSE at high acceleration
factors. Magn Reson Med 000:000–000, 2010. VC 2010 Wiley-
Liss, Inc.

Key words: partially parallel imaging; g-factor; sparsity
constraint; prior information; compressed sensing; numerical
algorithm

Partially parallel imaging (PPI) techniques (1,2) are being
routinely used to achieve increased image resolution,
decreased motion artifacts, and shorter scan time in mag-
netic resonance imaging (MRI). However, PPI techniques
reduce acquisition time at the cost of a reduction in sig-
nal-to-noise ratio (SNR). With an increase in the acceler-
ation factor, the increase in noise and artifact levels can
become significant, thereby reducing the diagnostic qual-
ity of the image. To avoid significant artifacts and noise
amplification, the acceleration factor, R, is typically re-

stricted to values far below the theoretical limit (i.e., the

number of coil elements). For example, acceleration fac-

tors are no more than 3 in most clinical exams for the

widely available eight-channel head coil. To reduce the

noise and artifact levels, techniques of enforcing sparsity

in PPI reconstruction have recently been proposed (3–6),

where ‘‘sparsity’’ means that the to-be-reconstructed

image has a sparse representation in a known and fixed

mathematical transform domain (7). These techniques

enforce the sparsities of the to-be-reconstructed image in

finite difference domain and wavelet transform domain

by minimizing its total variation (TV) norm and the L1

norm of its wavelet transform. The sparsity constraints

play an important role in lowering the noise/artifact lev-

els of the reconstructed images. Meanwhile, a data fidel-

ity term is used to preserve image contrast and resolu-

tion. Sparsity constraints and data fidelity are balanced

by the parameters that are the weights on the sparsity

terms, called regularization parameters. Given optimal

regularization parameters, ideal acquisition scheme, and

sufficient reconstruction time, these sparsity-constrained

methods can produce high-quality images with high

acceleration factors. In Ref. (3), impressive reconstruc-

tions were presented with acceleration factor as high as

8 in 2D imaging using radial acquisition and a 12-chan-

nel head coil. Using a piece-wise constant phantom and

vary-density random acquisition scheme, an acceleration

factor of 8 was achieved with an eight-channel torso coil

(4). Using 2D acceleration and Poisson-disc sampling, an

acceleration factor of 5 (2.5 � 2) was achieved for 3D

with a four-channel extremity coil (5). This previous

work demonstrates that it is possible to achieve accelera-

tion factors even higher than the number of coil elements

when the to-be-reconstructed image is very sparse, such

as with a piece-wise constant contrast or with very lim-

ited image support. However, aside from the difficulty of

implementing these special acquisition trajectories in

general applications, there are two intrinsic problems

that have limited the clinical applicability of these

advanced technologies: speed and robustness. In the lit-

erature, the conjugate gradient method (3,4,8) or the iter-

ative convolution in k-space method (5,9) were used for

implementation of sparsity constrained PPI. Except in

Refs. (7) and (3), no reconstruction time information was

explicitly reported for 2D images. In Ref. (7), without

combining with PPI, the reconstruction for a single

angiogram slice with matrix size 480 � 92 took about 30
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sec in MATLABVR . In Ref. (3), the reconstruction time
was in minutes for a 256 � 256 image acquired by a 12-
elements coil (C/Cþþ using the GNU Scientific Library/
Dell PowerEdge 2900 server with two Intel Xeon 5060
3.2 GHz dual core processors and 4 Gb memory). For 3D
imaging, the sparsity regularized reconstruction could
take hours (10). Such a prolonged reconstruction time is
not acceptable for clinical applications.

Robustness is another potential problem with existing
techniques. The final image quality is sensitive to the
regularization parameters (3,11). An inappropriate regu-
larization parameter can result in a significantly reduced
spatial resolution or significant residual artifacts/noise.
The optimal parameter is a function of, among other
things, the subject, the acquisition sequences, and the
acceleration factor. An optimal parameter-decision
scheme that is generally applicable has not yet been pub-
lished. Previous literature (3–6,8,10) used empirical val-
ues and did not provide extensive discussions on their
parameter decision schemes.

The goal of this article is to tackle both the speed and
robustness problems by using a novel numerical algo-
rithm, hence improving the clinical applicability of spar-
sity constrained PPI with general-purpose imaging
sequences. A fast algorithm for compressed sensing (CS)
with single channel data has recently been introduced in
(12), most of the single-channel compressed-sensing
reconstruction can be completed in seconds but cannot
be directly applied for sparsity-constrained PPI because
the integration of sensitivity maps destroys the required
operator orthogonality. One key concept in this fast algo-
rithm is to decompose one complex problem into several
subproblems that can be solved much faster by variable
splitting. In this work, we adopt the idea of variable-
splitting and apply the classical quadratic penalty tech-
nique to the constraint to improve the speed and robust-
ness of sparsity constrained PPI.

THEORY

In this section, after the introduction of the general theory
of the proposed numerical algorithm, a specific imple-
mentation for Cartesian data sets is provided. This spe-
cific implementation is named self-feeding Sparse SENSE.

Sparse Representation of MR Images

The goal of CS MRI is to accurately reconstruct an image
from a small subset of k-space rather than a complete
k-space data set in order to reduce scan time while pre-
serving the image quality. The CS approach requires that:
(a) the to-be-reconstructed image has a sparse representa-
tion in a known transform domain, (b) the aliasing arti-
facts due to k-space undersampling are incoherent (noise-
like) in that transform domain, and (c) there exists a non-
linear reconstruction algorithm that can enforce the spar-
sity in the transform domain and preserve the consistency
of the reconstruction using the acquired data. Recent
study has shown that while MR images may not be sparse
with respect to their pixel intensities, they are sparse in
certain transform domains. These transforms are called
sparsifying transforms. It has been shown in Ref. (7) that

MR images may be sparse in its finite difference domain,
and in its wavelet transformation domain. In that work,
the authors proposed the following nonlinear scheme for
MR image reconstruction with partially scanned data:

min
I

EðIÞ ¼ ����FpðIÞ � k
����2
2
þ l

����rI
����
1
þ m

����CðIÞ����
1
; ½1�

where Fp(*) is the Fourier transform operator combined
with the sampling mask (a matrix with value 1 at
sampled locations and value 0 at other locations), k is
the partially acquired data, I is the to-be-reconstructed
image, ! is the gradient operator, C(*) is an optional
sparsifying transform (e.g., a wavelet transform), and
||*||1 and ||*||2 denote the L1 and L2 norms. The non-
negative regularization parameters l and m balance these
terms. The first term is the data fidelity term; it ensures
the consistency of the reconstructed image with the
acquired data. The remaining terms are sparsity con-
straints; they enforce the sparsity of the reconstructed
image in its finite difference domain and wavelet trans-
form domain, respectively. Using a random or pseudor-
andom acquisition trajectory, the sparsity constraints can
reduce or remove the incoherent aliasing artifacts. Prom-
ising results have been achieved with significantly
undersampled single-channel k-space data (10,13,14).
Recently this model has been extended to use the spar-
sity in terms of a dictionary (15). Moreover, fast numeri-
cal methods (12,13,16–21) have been developed to
efficiently solve the minimization problem. For instance,
using the method in (12), a 256 � 256 two-dimensional
(2D) image can be reconstructed on average in 1 sec.

PPI With Sparsity Constraints

There are great interests in combining the CS technique
with PPI. A natural extension of model [1] from a single
channel to multichannel imaging is as follows (6):

min
I

EðIÞ ¼
XNch

j¼1

����FpðSjIÞ � kj
����2
2
þ l

����rI
����
1
þ m

����CðIÞ����
1
: ½2�

Here, j is the coil count, Nch is the number of coil ele-
ments, Sj is the sensitivity map of the jth coil element,
and kj is the partially acquired data for the jth coil ele-
ment. As a result of this combination, the final result
can be better than that by PPI or CS-MRI (7) individu-
ally. It has been shown in (6) that an image with well-
balanced SNR and spatial resolution can be obtained by
minimizing the energy functional in [2]. Incorporating
sensitivity maps from multiple channels helps balance
data fidelity and regularization. However, due to the
presence of sensitivity map Sj, the fast numerical algo-
rithms developed in (12,16,18–21) for single-channel
MRI reconstruction cannot be applied directly. This
results in a much longer reconstruction time to solve
model [2], which hinders its clinical applicability.

Decomposition of a Complex Problem into
Two Easier Subproblems

A major contribution of this work is to provide a fast
numerical algorithm to solve model [2]. Our method is
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based on the variable-splitting and classic quadratic pen-
alty technique in optimization to decompose the nonlin-
ear minimization problem [2] into two subproblems,
both of which can be solved in faster and more stable
manners. We first introduce an auxiliary variable Î to
transfer I out of the terms of sparsity constraints (the last
two terms) in [2], then we solve the following con-
strained minimization problem as an alternate:

min
I ;Î

EðI ; ÎÞ ¼
XNch

j¼1

����FpðSjIÞ � kj
����2
2
þ l

����rÎ
����
1

þ m
����CðÎÞ����

1
s:t Î ¼ I : ½3�

Clearly, minimizing [2] and [3] are equivalent in the
sense that they share the same solution. To solve [3], we
relax the equality constraint and penalize its violation by
quadratic function, then solve the following uncon-
strained minimization problem:

min
I ;Î

EðI ; ÎÞ ¼
XNch

j¼1

����FpðSjIÞ � kj
����2
2
þ l

����rÎ
����
1

þ m
����CðÎÞ����

1
þ a2

����I � Î
����2
2
: ½4�

With sufficiently large a, solving problem [4] gives an
approximation of the solution to problem [3].

Now problem [4] can be solved iteratively by minimiz-
ing the energy functional in [4] with respect to I and Î
individually while keeping the other one fixed. That is,
we solve the following two subproblems alternately until
(I,Î) converge:

I-subproblem:min
I

E½I � ¼ min
I

XNch

j¼1

����FpðSjIÞ

� kj
����2
2
þ a2

����I � Î
����2
2
; ½5�

Î-subproblem: min
Î

E½Î � ¼ min
Î

l
����rÎ

����
1

þ m
����CðÎÞ����

1
þ a2

����I � Î
����
2
: ½6�

As two parameters are sufficient to balance the three terms
in Eq. [6], a2 can be set to be 1 without any influence on
the final result. Î-subproblem is then modified to be

Î-subproblem: min
Î

E½Î � ¼ min
Î

l
����rÎ

����
1

þ m
����CðÎÞ����

1
þ ����I � Î

����
2
: ½7�

Now the nonlinear minimization problem [2], which
takes longer to solve, has been decomposed to two sub-
problems, [5] and [7]. Equation [5] is the model for prior
information Î regularized PPI, which is a linear problem
and is easier to solve. Equation [7] is the well-known
total variation (TV) þ wavelet image denoising problem,
for which there have been a number of numerical methods
(12,18,19,21–25) proposed to solve it with high efficiency
and stability. This decomposition moves the most time-
consuming terms, L1 norm constraints, out of the multi-
channel system. The convergence behavior of the two sub-
problems [5] and [7] can be deduced and summarized in
the following Theorem: For fixed a > 0, the sequence

In; În

� �n o
n
; n ¼ 0; 1; 2; . . . ;

generated by alternately solving Eqs. [5] and [7] from any
starting point (I0,Î0) converges to (Ia,Îa), a solution of [4],
and the convergence rate is linear, that is,

����In � Ia
���� � Cun

����I0 � Ia
����

for some y [ (0,1), and a similar estimate for În for some
û [ (0,1).

Self-Feeding Sparse SENSE

Equations [5] and [7] are applicable to acquired data sets
with any trajectory. Pseudorandom trajectories are pre-
ferred for imaging with partially acquired data because
the incoherent aliasing artifacts are easier to remove than
coherent artifacts. However, in this work, we focus on
uniform Cartesian sampling, which is used in a majority
of clinical applications. In this scenario, I-subproblem
(Eq. [5]) becomes equivalent to the model proposed in
Ref. (26): prior information regularized SENSE. Similar
to the approach used in conventional SENSE, Eq. [5] can
be easily solved using Eq. [6] in Ref. (26) with the same
reconstruction time as the conventional SENSE using a
pixel-by-pixel approach. In the first iteration, if there is
no prior Î information available from an extra scan, I-sub-
problem is simply the conventional SENSE. To adopt the
noise correlation among coil elements, the sensitivity
maps and the acquired data should be adjusted using
L�1/2VH, where L and V are the matrices of eigenvalues
and eigenvectors of the noise covariance matrix. For both
conventional SENSE (1) and prior information regularized
SENSE (26), the noise decorrelation is a routine step.

When a Cartesian trajectory is used, model [4] can be
further improved by introducing spatially adaptive weights
to the regularization term. As the g-factor map (1) is avail-
able from the initial I-subproblem, this noise distribution
information can be used to improve the effectiveness of Î-
subproblem. Because the noise is unevenly distributed in
the image I, constant l values cannot optimally balance
the needs for denoising and data fitting at all locations. In
a region with a higher noise level, a larger regularization
parameter is preferred to remove sufficient noise. Simi-
larly, in a region with a lower noise level, a smaller regula-
rization parameter is ideal to preserve the spatial resolu-
tion. A g-factor map, which can be easily calculated for
SENSE (1) and Generalized autoclibrating partially parallel
acquisitions (GRAPPA) (27), provides the predicted noise
distribution information. Hence, a g-factor map is used to
define the spatially adaptive regularization parameter to
balance the need for sparsity constraints and data fidelity.
Based on this idea, Eq. [4] becomes

EðI ; ÎÞ ¼
XNch

j¼1

����FpðSjIÞ � kj
����2
2
þ l

����ðg � 1ÞrÎ
����
1

þ m
����ðg � 1ÞCðÎÞ����

1
þ a2

����I � Î
����2
2
; ½8�

where g is the point-wise g-factor value from the initial
I-subproblem. If the g-factor value is close to 1 in a cer-
tain region, it means that the noise level is not amplified
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by the SENSE reconstruction. Therefore, a limited or no
sparsity constraint should be applied to that region to
preserve the spatial resolution. Accordingly, g � 1,
instead of g, is used in [8], and Î-subproblem becomes

Î-subproblem: min
Î

EjI ¼ min
Î

l
����ðg � 1ÞrÎ

����
1

þ m
����ðg � 1ÞCðÎÞ����

1
þ ����I � Î

����2
2
: ½9�

The numerical method provided in Ref. (12) is used to solve
[9]. The fast numerical method works well for complex
images. Hence, both magnitude and phase will be denoised
through [9]. The point-wise g-factor values bring no extra
computational costs for solving [9] compared to [7].

Joint estimation of sensitivity maps and reconstructed
image (JSENSE) has been proposed (28,29) to further
reduce reconstruction errors by using updated sensitivity
maps. This idea is adopted in this algorithm. Sensitivity
maps can be updated after Î-subproblem. Let Î denote the
initial result of Î-subproblem. To improve the accuracy
of the sensitivity maps, Î is projected back into k-space
channel-wise using initial sensitivity maps. If the central
k-space data is fully acquired, it can be inserted back to
update the reconstructed k-space. Then the sensitivity
maps can be recalculated from the complete and updated
k-space data sets. If there is no fully acquired central
k-space available, then this sensitivity map update step
can be skipped. To improve spatial resolution of Î, all
acquired data can be inserted back, which can then be
combined to produce an improved Î using sensitivity
map-weighted summation (30). For final reconstruction,
the updated sensitivity maps and updated Î can then be
used as inputs in [5]. As both the updated sensitivity
maps and Î are available from a self-feeding mechanism,
this specific implementation for sparsity-constrained
SENSE is named self-feeding Sparse SENSE.

The flowchart shown in Fig. 1 summarizes the method
described above. For a better explanation of the proce-
dure for updating calibration information (sensitivity
maps and Î), Fig. 2 uses an example to show the details.
The acquisition scheme of the data used in this example
will be provided in the Methods section. For better visu-
alization, Fig. 3 shows some enlarged images from Fig. 2.
With low-resolution sensitivity maps (Fig. 3b), the initial
reconstruction (Fig. 3c) of I-subproblem by conventional
SENSE could contain a significantly high noise/artifact
level when the acceleration factor is high. In this exam-
ple, the acceleration factor was 5. Î-subproblem using [9]
results in an image, Î, with a reduced noise and artifact
level, but also with a reduced spatial resolution (Fig.
3d). By substituting with the acquired k-space, an image,
Î, with higher spatial resolution and low noise/artifact
level can be generated (Fig. 3e). Similarly, improved sen-
sitivity maps (Fig. 3f) can be generated.

Parameter Decision Scheme

There are three regularization parameters in the whole
procedure: a in [5] for I-subproblem, which balances the
data fidelity and image similarity between I and Î and l
and m in Eq. [9] for Î-subproblem, which balance image
smoothing and signal preservation.

According to the deduction from Eq. [4], a should be
sufficiently large. In a self-feeding Sparse SENSE, Î is the
result of image denoising from the reconstruction of a
previous iteration by Î-subproblem. It is a close approxi-
mation of the true image but potentially with lower spa-
tial resolution. With the expectation that the reduction
of spatial resolution is limited due to optimal l and m; a
is fixed to be 0.5 in all experiments.

Based on our experience and reports in (7), it is found
that, if the wavelet transform is used, the optional spar-
sity term ||C(I)|| does not contribute much to the final
reconstruction. For simplicity, this optional term is
turned off by fixing m ¼ 0. As the overall noise level in
the reconstructed image is related to the values in the g-
factor map, the regularization scalar l is defined by the
mean of g-factor. A high mean g-factor value indicates a
high overall noise level, therefore, a large l should be
used. Consequently, l is defined to be

l ¼ meanðgÞ � 0:01: ½10�

Here mean(*) is the operator to calculate mean in the
image support or region of interest. An empirical value,
0.01, is proposed for scaling. Using [9] and [10], the
weight of sparsity constraint term is automatically defined
by the g-factor. If mean (g) is very close to 1, the initial
SENSE reconstruction can be used as the final result to
avoid prolonged reconstruction time due to further steps.
More clarification on the values of a and the scalar in
[10] will be provided in Restults and Discussion sections.

Beside the regularization parameters, there is one extra
parameter for the number of iterations of sub-problems [5]
and [9]. As shown in Fig. 1, self-feeding Sparse SENSE
processes [5] and [9] only one time after the initial SENSE
reconstruction. This is because we found that using more
iterations did little to improve the image quality, but
increased the reconstruction time in the case of brain
imaging. It is possible, however, that more iterations are
necessary for some other applications. In this particular
work, we used only one iteration in all experiments. The

FIG. 1. Flowchart of the proposed self-feeding Sparse SENSE, a

specific implementation of the variable splitting and quadratic
penalty technique for Cartesian data sets. Because the inputs for
the final reconstruction step are from a self-feeding mechanism,

this implementation is called self-feeding Sparse SENSE.
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updating of sensitivity maps and the efficiency of SENSE
for unfolding contribute to the fast convergence.

METHODS

Data Acquisition

Experiments were designed to evaluate whether the pro-
posed method could consistently produce high quality
images with high acceleration factors in a reasonable time
period. Two brain data sets were acquired using a 3.0-T
Philips scanner (Philips, Best, Netherlands) using T2-
weighted turbo spin echo (T2 TSE) and T1-weighted gradi-
ent echo imaging (T1 FFE) sequences. In addition, low-re-
solution pre-scans were acquired to produce pre-scanned
sensitivity maps. Both bodycoil and phased array coil
were used for the pre-scans. All data sets were fully
acquired using commercially available eight-element head
coils (Invivo Corp, Gainesville, FL, USA), and then artifi-
cially down-sampled for reconstruction. Table 1 provides
the acquisition parameters for these data sets. The data set
acquired by T2 TSE (data set 1) was used for Figs. 2 and 3.

Implementation of Algorithms

Eqs. [5] and [9] were used to implement the proposed
self-feeding sparse SENSE. Eq. [6] in Ref (26) was used
to solve I-subproblem (Eq. [5]) through a pixel-by-pixel

approach. Initially, since there was no Î available, con-
ventional SENSE was used. The initial sensitivity maps
could be either from the self-calibration signal or from
pre-scan. The outputs of the conventional SENSE, both
the g-factor map and the reconstructed image, were used
as inputs of Î-subproblem (Eq. [9]). As mentioned in the
Theory section, a ¼ 0.5, l ¼ mean (g) � 0.01, and m ¼ 0
were used in all experiments. Also, only one iteration
was used after the initial SENSE reconstruction, as
shown in Fig. 1.

For comparison, a conjugate gradient (CG)-based solu-
tion to Eq. [1], Conjugate Gradient-Compressed Sensing
SENSE (CS SENSE), was also implemented. In this work,
m ¼ 0 was used for CG-CS SENSE. Instead of a fixed l,
the optimal regularization parameter was manually
tuned for CG-CS SENSE. Also, the termination of CG-CS
SENSE was manually controlled to achieve the lowest
error with the least number of iteration. The initial input
for conjugate gradient iteration was the result of con-
ventional SENSE. Data set 1 was used for experiments
with self-calibrated sensitivity maps. To use the self-cali-
bration signal in the final reconstruction, the result of
Eq. [5], Î, was projected back into k-space channel-wise
after multiplication with sensitivity maps. The central k-
space data was inserted back to update the reconstructed
k-space. Then the final reconstruction was produced
using Romer’s combination scheme (30). In the

FIG. 2. Flowchart for updating
calibration information: sensitivity
maps and Î. Left and right side

of the dashed line denote the
improvement of Î and sensitivity

maps, respectively.
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implementation of GRAPPA, the size of the convolution
kernel was 4 � 5. The data set acquired by T1 FFE
sequence (data set 2) was used for experiments using
prescanned sensitivity maps. The prescanned low-reso-
lution images were only used for sensitivity map calcula-
tion. In short, the proposed methods were compared
with CG-CS SENSE, conventional SENSE, and GRAPPA.

Design of Experiments

To compare the proposed method with other existing
methods when the sensitivity maps were self-calibrated,
data set 1 was reconstructed with nominal undersam-
pling factors of 2, 3, 4, and 5 by SENSE, GRAPPA, CG-
CS SENSE, and the proposed method. The 32 central
k-space lines were used for initial sensitivity map calcu-
lation and the final reconstruction. Hence the net accel-
eration factors were 1.9, 2.6, 3.4, and 4, respectively.

To test the performance of the proposed method for
data sets with pre-scanned sensitivity maps, data set 2
was used. Net acceleration factors 4 and 5 were used in
the artificial down sampling. The results of conventional
SENSE were used for comparison.

Accuracy, speed, and robustness were all considered
for comparison. For accuracy assessments, both the mag-
nitude and the distribution of the error were measured.
As full k-space data was available, the image recon-

structed with the full k-space data was used as the refer-
ence image. The root mean square error (RMSE) was
used to evaluate the overall magnitude of error. The error
map depicts the distribution of the difference in magni-
tudes between the reconstruction and the reference and
was used to show error distribution. The zoomed-in
image was used to demonstrate the preservation of fine
structures and sharp edges.

Robustness refers to the insensitivity of the reconstruc-
tion to the choice of parameters. In each of the experi-
ments above, all the parameters of the proposed method
were automatically defined. To demonstrate the rationale
of the choice of parameters, two set of experiments using
the proposed method were processed with a wide range
of parameters. In one set of experiment, the l was
defined by Eq. [10], and a was changed from 0 to 4 grad-
ually. In the other experimental set, a was fixed to be
0.5 and the scalar in Eq. [10] was changed from 0 to 0.1
gradually. RMSEs were recorded for each set of parame-
ters. Net acceleration factor 4 was used for all data sets
in this set of experiments.

All methods were implemented using the MATLABVR

programming environment (MathWorks, Natick, MA).
The MATLABVR codes were processed on a Dell Precision
Laptop (Dell, Round Rock, TX) with dual 2 GHz process-
ors and 3.25 GB RAM.

RESULTS

Figure 4–6 illustrate the comparison of the proposed
self-feeding sparse SENSE with other reconstruction
methods using data set 1. Error maps (Fig. 4), zoomed-in
regions of the reconstructed images (Fig. 5), and the plot
of RMSEs (Fig. 6) were used for comparison. Self-cali-
brated sensitivity maps were used for reconstruction.
From the error maps in Fig. 4, it can be seen that the
reconstruction by the proposed method (Fig. 4b) has the
lowest error level. The spatial resolution was only
slightly reduced at regions with high noise levels in the
SNESE reconstruction (Fig. 4c). The results by SENSE
and GRAPPA (Fig. 4d) clearly showed a higher noise
level than Fig. 4b. Figure 4e,f show the sensitivity of CG-
CS SENSE to the choice of regularization parameter.
When l ¼ 0.04, serious residual noise can be observed
(Fig. 4e). When l was tuned to 0.08, boundaries of the
brain structures can be observed (Fig. 4f). This means
that the spatial resolution of the image was damaged. In
our experiments, it was extremely difficult to find an
optimal l for well-balanced spatial resolution preserva-
tion and SNR improvement for CG-CS SENSE. In Fig. 5,
zoomed-in images were used to show the comparison.
Compared to Figs. 5c–f, the reconstruction by the

Table 1

Data Acquisition Parameters

Data Set Serial
number Sequence FOV (mm2) Matrix size TR/TE (ms) ETL or TI PE direction

1 T2 TSE 205 500 � 512 3000/85 ETL 20 AP
2 Prescan T1 FFE 230 96 � 96 250/20 LR

Imaging T1 FFE 230 320 � 320 250/4.1 LR

AP, anterior-posterior; ETL, echo train length; FOV, field of view; LR, left-right; PE, phase encoding; TE: echo time.

FIG. 3. Some enlarged images in Fig. 2. (a) Composite image
from the 32 central k-space lines for initial sensitivity map calcula-

tion; (b) initial sensitivity map of channel 1 using the 32 central k-
space lines, (c) initial reconstruction of I-subproblem through con-
ventional SENSE, (d) result of Î-subproblem using Eq. [9] showing

a reduced noise/artifact level than (c); (e) improved Î, which is the
result after the substitution of all acquired k-space data with

higher spatial resolution than (d); (f) updated sensitivity maps. Fig-
ure 3e,f will be used as inputs for I-subproblem.
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proposed method (Figs. 5b) clearly has better balance of
preservation of spatial resolution and SNR improvement.
Figure 6 plots the comparison of RMSEs of several
reconstruction methods at different acceleration factors.
For the RMSE values of CG-CS SENSE, the lowest value
among results by different regularization parameters
was used. When the acceleration factor was 4 and 5, the
RMSEs of the results by the proposed method were sig-
nificantly lower than those by other reconstruction
methods.

Table 2 compares the reconstruction time for this data
set as well as presenting the values of the optimal l for
CG-CS SENSEN. The last column provides the mean of
the g-factor values in initial SENSE reconstruction,
which was used to automatically define the regulariza-
tion weight of self-feeding Sparse SENSE through Eq.
[10]. Note that the time for the proposed self-feeding
Sparse SENSE included the time for sensitivity maps cal-
culation and g-factor map calculation. The number of
iterations of CG-CS SENSE was manually controlled to

minimize the reconstruction time for optimal results.
From Table 2 it can be seen that the optimal l for CG-CS
SENSE changed greatly for different acceleration factors.
Also, even using a manual control scheme, when the

FIG. 4. Comparison using error maps from data set 1 with an
acceleration factor of 5. a: The reference image. The white box

defines the zoomed in region shown in Fig. 5. (b–f) are the error
maps of the reconstruction by the proposed method (b), SENSE
(c), GRAPPA (d), CG-CS SENSE with l ¼ 0.04 (e), and CG-CS

SENSE with l ¼ 0.08 (f), respectively. The same intensity scale
was used for all these error maps. The RMSEs of the reconstruc-

tions corresponding to (b–g) are 8.1, 20.3,17.1, 12.8, and 10.4%.

FIG. 5. Comparison using zoomed in images with data set 1.
The zoomed in region is defined by the white box in Fig. 4a). The

acceleration factor was 5. a–f: are the reference image (a), the
reconstruction by the proposed method (b), SENSE (c), GRAPPA
(d), CG-CS SENSE with l ¼ 0.04 (e), and CG-CS SENSE with l ¼
0.08 (f), respectively.

FIG. 6. Plot of RMSEs of reconstructions at different acceleration
factors.
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acceleration factor was greater than 2, the reconstruction
time of CG-CS SENSE was still more than 10 times lon-
ger than when using the proposed method.

Figure 7 shows the results with pre-scanned sensitivity
maps. The spatial resolution of the pre-scan was 96 �
96. For comparison, the results for conventional SENSE
are also presented. The total processing time using the
proposed method for this 320 � 320 � 8 data set was
13.2 sec. Even at a net acceleration factor of 5, the vessel
is well defined in the reconstruction (Fig. 7g). From the
difference map (Fig. 7e), it can be seen that the spatial
resolution was not obviously impacted when the net
acceleration factor was as high as 4. Compared with the
result using conventional SENSE, the RMSE was reduced
from 13.2 to 6.4%.

Figure 8 shows the plots of RMSEs with respect to dif-
ferent regularization parameters. Figure 8a depicts the
change with respect to regularization parameter a in
I-subproblem. Figure 8b depicts the change with respect
to the scalar in Eq. [10] for the definition of regulariza-
tion parameter l for Î-subproblem. It can be seen that
fixed values used in this work provided RMSE close to
the lowest. Notice that, in addition to RMSE, spatial re-
solution is another important criterion. Therefore, con-
servative values (moderate regularization parameters)
were used to preserve spatial resolution. Figure 8 dem-
onstrates why 0.5 and 0.01 were used for a and scalar,
respectively, in Eq. [10].

DISCUSSION

Advantages of the Proposed Method

When compared with the conjugate gradient-based spar-
sity-regularized SENSE, the proposed method is much
faster. The computational cost for the proposed method
is two conventional SENSE reconstructions plus one spa-
tially adaptive image denoising procedure. Regardless of
the number of channels, this denoising step only took
�1 sec for a 256 � 256 image, and �4 sec for a 512 �
512 image. When the acceleration factor was 4, the total
processing time for a 256 � 256 � 8 data set and for a
500 � 512 � 8 data set was 9.7 and 36 sec, respectively,
using the MATLABVR environment. In contrast, the
CG-CS SENSE took 446 sec for the 500 � 512 � 8 data
set (Table 2). This difference in speed can be explained
by the decomposition of the original complex problem
into two much simpler subproblems. For an equally
spaced Cartesian trajectory, which is the most commonly

used trajectory in clinical applications, I-subproblem can
be solved with the same reconstruction time as conven-
tional SENSE, which has computational complexity
O(N � R2), N being the number of pixels of the image
and R the acceleration factor. Î-subproblem is simply one
of a number of image denoising problems that have been
intensely studied during the past decades (12,18,19,21–
25). Fast and robust numerical methods can easily be
found in the literature. In this work, the method in Ref.
(12) was used. Beside four steps that have computational
complexity O(N), the most expensive computation in
each iteration for Î-subproblem is two fast Fourier trans-
forms (FFT). To the contrary, the number of FFTs in
each iteration of CG-CS SENSE is 4 � Nch, as the fidelity
term uses data from all channels. Moreover, the compu-
tational complexity to find the optimal step size in each
iteration is O(N � Nch � R�1) � Ntry, where Ntry is the
number of tests for optimal step size. Therefore, for each
iteration, CG-CS SENSE needs 4 � Nch – 2 more FFTs
than Î-subproblem, and significantly more effort to reach
optimal step size. Another reason for fast reconstruction
speed of the proposed method is that a single iteration
after the initial SENSE reconstruction turned out to be

Table 2
Comparison of Reconstruction Time and Parameters for a 500 �
512 � 8 Data Set

SENSE CG-CS SENSE
Self-feeding

Sparse SENSE

R Time Time l Nit Time Mean (g)

2 27 153 0.01 5 57 1.12
3 19 506 0.04 15 42 1.48

4 16 446 0.05 15 34 2.3
5 12 373 0.08 20 26 3.7

Time is in seconds. Mean (g) is the mean of g-factor values. Nit is

the number of iterations.

FIG. 7. Reconstruction with pre-scanned sensitivity maps (96 �
96). a: The reference image, (c), and (f) are the reconstructions by
the proposed method at net acceleration factors 4 and 5, respec-

tively; (i) is the reconstruction by SENSE at net acceleration factor
5. The RMSEs of c), f), and i) are 4.4, 6.4, and 13.2%. Figure 7b,
d, g, and j demonstrate the corresponding enlarged region defined

by the white box in a. Figure 7e, h, and k are difference maps of c,
f, and i. The difference maps were brightened five times.
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sufficient. The updated sensitivity maps and the strength
of SENSE in unfolding the undersampled data signifi-
cantly increase the speed of convergence.

Another advantage of the proposed self-feeding Sparse
SENSE is that this method provides a good balance
between the preservation of spatial resolution and the
reduction of noise. Compared with conventional PPI
techniques, the RMSE is dramatically reduced when the
acceleration factor is high. Meanwhile, from the differ-
ence maps and zoomed-in images, it can be seen that the
cost of spatial resolution for SNR improvement is mini-
mal. This advantage is due to the spatially adaptive regu-
larization technique used in Î-subproblem. The g-factor
map is used to define the spatially adaptive regulariza-
tion parameter. This offers the potential to sufficiently
remove noise in regions with higher noise levels, mean-
while preserving as much as possible spatial resolution
in regions with lower noise levels. With a constant regu-
larization parameter, this is very difficult, if not impossi-
ble. As shown in Figs. 4e and 5e, severe residual noise
can be observed in regions with a high noise level when
a small constant, 0.04, was used. When a larger constant,
0.08, was used, the noise was removed at the cost of a
significant reduction in spatial resolution. Image struc-

tures can be clearly observed in the error map (Fig. 4f). It
should be noted that a conventional acquisition scheme,
Cartesian and equally spaced phase encoding lines, was
used in our experiments. CG-CS SENSE prefers random
or pseudo-random acquisition to produce more evenly
distributed noise and thus avoids the need for weighted
smoothing. With an optimal acquisition scheme, CG-CS
SENSE can potentially produce more accurate results
than those obtained using a conventional acquisition
scheme. However, the optimal acquisition scheme might
be difficult to implement in general applications.

Besides speed and accuracy, robustness is another
advantage of the proposed method. In all these experi-
ments, the same set of parameters (a ¼ 0.5, l as defined
by Eq. [10]) was used. The reconstructions used both
self-calibrated and pre-scanned sensitivity maps with a
wide range of acceleration factors (from 2 to 5). The
same set of parameters consistently produced images
with well-balanced SNR and spatial resolution. Figure 8
further demonstrates the relationship between the pa-
rameters and RMSE. Figure 8a demonstrates that the
RMSE would be stable once a > 1. This is reasonable
since the reconstruction will converge on the output of
Î-subproblem when a increases. A small value for a will

FIG. 8. Plots of RMSEs with respect to

the regularization parameters. a: RMSE
against a in Eq. [5]. The scalar in
Eq. [9] was fixed at 0.01. b: RMSE

against the scalar in Eq. [9]; a was
fixed at 0.5. The vertical lines show the
values used in this article.
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make the reconstruction rely more on the conventional
SENSE, which potentially has a low SNR when the
acceleration factor is high. As the output of Î-subproblem
has a high SNR, but potentially a lower spatial resolu-
tion, a moderate value of 0.5 was used in our experi-
ments to preserve spatial resolution. The vertical line in
Fig. 8a shows the location. A smaller l means less
smoothing in Î-subproblem, and potentially results in an
image with some residual noise and well preserved spa-
tial resolution. A larger l gains SNR at the cost of spatial
resolution. It was noticed that the lowest RMSE was
achieved when the scalar in Eq. [10] was around 0.01
(between 0.005 and 0.015) for all data sets. Hence 0.01
was used in our work. The results show that the fixed
scalar worked well for all acceleration factors. This is
different from CG-CS SENSE. In Table 2, it can be seen
that the optimal l changes from 0.01 to 0.08 for accelera-
tion factors 2 to 5, respectively.

In summary, a rapid and robust numerical algorithm
has been proposed for sparsity-constrained parallel imag-
ing using the conventional Cartesian acquisition scheme.
Acceleration factors higher than conventional PPI techni-
ques can be achieved with minimal impact on image re-
solution and SNR.

Future Work

In this work, RMSE was used to quantitatively evaluate
image quality. While RMSE cannot sufficiently show the
preservation diagnostic information, a necessary future
project is to clinically evaluate the proposed method.

The introduction of the auxiliary variable decomposes
the sparsity constrained PPI energy functional into two
subproblems. The two corresponding equations ([5] and
[7]) are applicable to acquired data sets with any trajec-
tory. In this work, a specific implementation with Carte-
sian trajectory is introduced. The framework can be eas-
ily extended to non-Cartesian data sets or non-SENSE
PPI techniques. For example, using a prior information
regularized GRAPPA technique (31) and its extension for
a radial data set (32), this framework can be easily
adopted for sparsity constrained radial GRAPPA. Given a
fast numerical method for Eq. [5] with arbitrary trajec-
tory, the proposed method can be extended to all trajec-
tories. Fortunately, one recent improvement in mathe-
matics (33) provides a simple, but very efficient,
approach to Eq. [5] with arbitrary trajectory. In conjunc-
tion with GRAPPA operator gridding (GROG) (34), used
to avoid gridding in iteration, preliminary results show
that, when matrix size is 256 � 256 � 8, sparsity-con-
strained SENSE with arbitrary trajectories can be fin-
ished in 15 sec (35). Additional results for data sets with
arbitrary trajectories will be reported separately in the
future.

It is possible that more iterations or better parameter
settings can further improve reconstruction accuracy.
However, for brain imaging, more iterations did little to
improve reconstruction accuracy. To avoid a longer
reconstruction time, the current version of self-feeding
Sparse SENSE does not adopt an iterative reconstruction
scheme. In the future, the potential benefit of iterative
reconstruction on other applications will be studied.

Also, two empirical values, based on Fig. 8, were used
for regularization parameters. In addition to those shown
in this article, in all our experiments, these values consis-
tently generated images with well-balanced SNR and spa-
tial resolution. Also, it is possible to further optimize
these parameters. In just one example, a can be spatially
adaptive based on the spatially different reliability of Î. In
regions with a g-factor value close to 1, no sparsity regula-
rization is applied. Hence the reliability of these regions
should be higher than regions with high g-factor values.
Future results with more discussion will be reported.

Some comparisons on accuracy and speed were pre-
sented in this work. Numerous advanced methods
(4,5,8,9) on sparsity-constrained PPI have been recently
published. Because of the limited amount of information
provided in these publications, it is hard to compare
these techniques with the proposed method. In the
future, we would like to further compare speed, accu-
racy, and robustness of this method with others.

CONCLUSIONS

It is demonstrated that the conventional sparsity-con-
strained PPI can be decomposed into two simpler sub-
problems, each of which can be solved in a much faster
and robust manner. Using spatially adaptive regulariza-
tion combined with a Cartesian trajectory, the proposed
self-feeding Sparse SENSE method can robustly produce
images with well-balanced SNR and spatial resolution at
high acceleration factors.
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