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Abstract

Compressed sensing (CS) and partially parallel imaging (PPI) enable fast magnetic resonance (MR) imaging by reducing the amount of k-
space data required for reconstruction. Past attempts to combine these two have been limited by the incoherent sampling requirement of CS
since PPI routines typically sample on a regular (coherent) grid. Here, we developed a new method, “CS+GRAPPA,” to overcome this
limitation. We decomposed sets of equidistant samples into multiple random subsets. Then, we reconstructed each subset using CS and
averaged the results to get a final CS k-space reconstruction. We used both a standard CS and an edge- and joint-sparsity-guided CS
reconstruction. We tested these intermediate results on both synthetic and real MR phantom data and performed a human observer
experiment to determine the effectiveness of decomposition and to optimize the number of subsets. We then used these CS reconstructions to
calibrate the generalized autocalibrating partially parallel acquisitions (GRAPPA) complex coil weights. In vivo parallel MR brain and heart
data sets were used. An objective image quality evaluation metric, Case-PDM, was used to quantify image quality. Coherent aliasing and
noise artifacts were significantly reduced using two decompositions. More decompositions further reduced coherent aliasing and noise
artifacts but introduced blurring. However, the blurring was effectively minimized using our new edge- and joint-sparsity-guided CS using
two decompositions. Numerical results on parallel data demonstrated that the combined method greatly improved image quality as compared
to standard GRAPPA, on average halving Case-PDM scores across a range of sampling rates. The proposed technique allowed the same
Case-PDM scores as standard GRAPPA using about half the number of samples. We conclude that the new method augments GRAPPA by
combining it with CS, allowing CS to work even when the k-space sampling pattern is equidistant.
© 2013 Elsevier Inc. All rights reserved.
Keywords: Compressed sensing; Coherent aliasing artifact; Parallel MR imaging; K-space sampling; Decomposition; Quantitative image quality; Perceptual
difference model
1. Introduction

Compressed sensing (CS) allows the reconstruction of
sparse images or signals from very few samples [1,2]. In
magnetic resonance imaging (MRI), this can reduce
scanning time by allowing reconstruction from very few
k-space samples. There are three important factors that
determine the success of a CS reconstruction: the
incoherence of measurements, the sparsity/compressibility
of signals and the efficiency of the reconstruction
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algorithm [3]. Improving any of these factors results in a
better CS reconstruction.

Incoherence of measurements is usually satisfied by
random sampling. Unfortunately, most currently routine
clinical MR scans are obtained using equidistant Cartesian
sampling rather than random trajectory sampling. For
example, in applications such as parallel imaging, acquisi-
tion trajectories are typically not randomized, which makes
combination with CS difficult.

Parallel MRI employs coil sensitivity profiles of spatially
deployed array coils to recover full field-of-view images from
undersampled k-space signals. Partially parallel imaging (PPI)
techniques like SENSitivity Encoding (SENSE) [4] (recon-
struction in image domain) and GeneRalized Autocalibrating
Partially Parallel Acquisitions (GRAPPA) [5] (reconstruction
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in Fourier domain) deal with coherent k-space measurements
(e.g., sampled or regridded equidistant Cartesian k-space). In
standard GRAPPA [5], fully sampled center k-space is used to
estimate the complex coil weights which are then applied to
recover nonsampled k-space. We propose to improve
GRAPPA by using the CS reconstructed images.

Several improvements to PPI have been proposed in the
past. They focus on transplanting the CS techniques such as
regularizing the inversion problem based on the L1 norm and
total variation (TV) [6–8], constraining the reconstruction
with incoherent sampling or other sparsity condition [9,25],
finding a better sparse representation for the desired image
(e.g., utilizing the sparsity of time frame image differences in
dynamic MRI [10]) or modifying both the acquisition
scheme and reconstruction procedures to make them fit each
other [7,11–14]. However, all of these improvements come
at the expense of pulse sequence changes and the associated
technical complexities that considerably restrict the flexibil-
ity of CS applications to PPI. These limitations lead to an
important question: can CS be used for reducing coherent
aliasing artifacts due to coherent sampling such as
equidistant Cartesian sampling?

In this work, we break the coherence by splitting, or
“decomposing,” equidistant k-space samples into multiple
sets of random samples. We fuse power of CS and PPI to
reconstruct sharp, high-resolution images from measure-
ments obtained with high acceleration rates, where PPI
would fail. We propose to sequentially perform CS and
PPI reconstructions without modifying the original algo-
rithmic structures of either method. This will allow the
minimal possible complexity of integrating CS into any
existing PPI techniques.
2. Algorithms

Starting with equidistantly under-sampled k-space data,
we decomposed it into multiple sets of random k-space
samples using the technique described in Section 2.1 and
then used both the standard CS and the edge-guided CS with
joint sparsity, which are explained in Sections 2.2 and 2.3,
respectively, to iteratively reconstruct full k-space data from
each of the subsets. A flowchart depicting the proposed
approach is shown in Fig. 1. CS reconstructions from
different decompositions were averaged, giving a full
calibration data for standard GRAPPA [5] to further remove
artifacts and noise.

2.1. Sampling decomposition

The motivation of random decomposition is to obtain
measurements such that there exists an incoherence between
the sampling matrix and the sparsifying matrices [2]. Given
equidistant, variable-density and undersampled k-space data,
multiple (Nd) sets of decomposition masks (Md) were used to
create decomposed data subsets. Both undersampling and
decomposing were performed along the same direction (e.g.,
phase encoding direction). A flowchart depicting the
procedure to createMd's is shown in Fig. 1. An equipartition
of the energy sampling (EES) scheme [15] was used to
partition the spectral energy density of k-space data into a
number of equal-energy sub-bands (denoted by ΔΩ in the
figure) and then to create the EES random sampling mask
(Mees). Since the sampling scheme is about full field of view
(FOV), we chose full k-space linearly interpolated from
undersampled data. Then, anMd can be created by randomly
selecting the phase encoding lines fromMees, as explained in
step 3 of the flowchart. We used the L1-norm to calculate k-
space energy [15]. For a one-dimensional example in which
the average energy of frequency encoded lines (denoted as
E(Ω), where Ω ∈ [ΩL, ΩH] is the frequency along phase
encoding direction) and N acquired phase encodes are used,
the i-th frequency value selected by EES scheme is:
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with the width of the i-th sub-band:

ΔΩi = ε = E Ωið Þ; ð2Þ
where ε≡

∫ΩH
ΩL

E Ωð ÞdΩ
N and Ω is the frequency along phase

encoding direction.
This method creates variable density decomposition

sampling mask which is based on the distribution of k-
space signal energy, and we used it to decompose the k-space
samples into Nd different subsets. Some high-energy k-space
signals were repeatedly assigned to every subset. Thus, each
subset had a final sampling rate larger than 1/Nd, and a
different Md was customized for each different MR data set
(due to its energy distribution).

2.2. The standard CS reconstruction

CS exploits the sparsity of an unknown image u to
reconstruct it from many fewer linear measurements than
required by the Nyquist–Shannon sampling theory. We used
a standard CS basis pursuit reconstruction algorithm [2,3] to
create the intermediate reconstructions that were then
combined to form a high-quality image.

In the context of application to MRI, the data y is obtained
from partially sampling the Fourier transform of an image:
y=Fpu+n=PFu+n, where P ∈ RM×N is a selection matrix
and F is a Fourier transform matrix. In Ref. [3], the unknown
image u is solved from the following optimization problem:

min
u

α‖ψu‖1 + βTV uð Þ + 1
2
‖Fpu−y‖22; ð3Þ

where ψ is a wavelet transform matrix; α and β
control the contributions fromψ and TV sparsifying transforms,
respectively. For a two-dimensional image u, isotropic dis-

cretization of TV(u) is ∑
i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui + 1;j−ui;j
� �2

+ ui;j + 1−uij
� �2q

.

The success of solving Eq. (3) relies heavily on two factors: the
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Fig. 1. Flowchart of sampling decomposition method. Step 1 is to create the EES random sampling mask from the linearly interpolated k-space data. Step 2 is to
create two randommasks (Nd=2). In step 3, the decomposition randommasks are created from both EES mask and randommask and then used to decompose the
original data set into two data subsets.
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sparsity of u and the incoherence between the sampling matrix
Fp and the sparsifying matrix ψ.

2.3. Edge- and joint-sparsity-based CS reconstruction

Starting with the intermediate reconstruction, we
used edge detection and join sparsity to improve
reconstruction. The intermediate reconstruction often
included artifacts and noise, which can complicate edge
detection. As a result, we used our previously published
local mutual information (LMI) technique to separate real
edges from fake ones [16]. We defined a binary mask
matrix w that has value zero on edges and one elsewhere.
A discretized weighted TV term defined as: TVw uð Þ =
∑
i;j
wij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui + 1;j−ui;j
� �2

+ ui;j + 1−ui;j
� �2q

;with wij=0 if pixel

(i,j) fell on edge and 1 elsewhere, was used to replace the
TV term in Eq. (3). The same mask w was used across all
channels, implementing joint sparsity across all channels.
This joint sparsity forces reconstructions for each channel
to share the same distribution of edges, which is
reasonable since they are images of the same object.
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Fig. 2. Flowchart of CS reconstruction.

Table 1
Data descriptions

Data
name

Size
(PE×FE×coils)

Imaged object MR scanner Acquisition

Data set 1 256×256×1 Shepp–Logan
phantom

N/A N/A

Data set 2 256×256×8 Water
phantom

Philips 3-T
Achieva

T2W TSE

Data set 3 256×256×4 Volunteer's
brain

GE 1.5-T
Discovery

FLAIR

Data set 4 198×256×8 Volunteer's
heart

GE 3-T
Discovert

GRE

TSE = Turbo Spin Echo; FLAIR = Fluid Attenuated Inversion Recovery
GRE =Gradient Echo.
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This new CS model was applied iteratively. A flowchart in
Fig. 2 shows the procedure.

The application of the newCSmodel to each decomposition
of each channel results in a full k-space reconstruction of the
image of interest, scaled by the corresponding coil sensitivity.
First, within each channel, we aggregated reconstructions from
different decompositions by averaging. A final, full FOV
image can then be formed by combining the different channels
with a standard square root of sum of squares.

2.4. Standard and proposed GRAPPA reconstructions

In standard GRAPPA [5], the first step is to create the
overdetermined linear equations from the autocalibrated
signal (ACS) lines and estimate the complex coil weights by
solving the equations with a least squares algorithm. The coil
weights are calibrated by fitting blocks of ACS signals from
every coil to a single ACS line in one coil. We propose to
modify this by using the CS reconstructed images to calibrate
the GRAPPA kernel.

We call the proposed combined method for PPI image
reconstruction “CS+GRAPPA.”

3. Methods

We used both phantom and in vivo MR data sets to test
the algorithms. To validate the effectiveness of decompo-
sition, a double-stimulus continuous quality scale (DSCQS)
[17] observer experiment was used. We used a perceptual
difference model (Case-PDM) [17] to objectively evaluate
the CS+GRAPPA reconstructions due to the large number
of images.

3.1. Data description and optimal CS
regularization parameters

All data sets used for algorithm testing are described in
Table 1. Data sets 1–2 were synthetic and real phantoms
used for developmental testing of the decomposition method.
We tested the CS+GRAPPA method on two sets of in vivo
MR data (Data sets 3–4). All data were fully acquired in a
Cartesian trajectory and were synthetically undersampled.

α and β values in Eq. (3) were optimized by finding the
lowest PDM score in an exhaustive search experiment on a
wide range. Two optimal sets of α and β were used in the
intermediate CS reconstructions. For the numerical phantom
data set, we used empirically determined α and β values of
order of 10−2. For theMRwater phantom and in vivo data sets,
we usedα and β values of order of 10−5 and 10−2, respectively.

3.2. Studying decomposition effectiveness and
artifact reduction

We used Data set 1, the numerical phantom, to evaluate
how the proposed method reduced artifacts.

We compared the performance of CS reconstruction when
applied to two different sampling schemes: equidistant, with
;
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Fig. 3. Effectiveness of decomposition in CS reconstruction. Image (A) is a reference image for the numerical phantom data. Two sampling schemes, equidistan
scheme (B) and random scheme (C), have the same sampling rate (0.31), same fully sampled central phase encoding lines and the same total energy. All CS
reconstructions here share the same regularization parameters. Using standard CS with scheme (B), images (E) and (D) were reconstructed with and withou
decomposition, respectively. By visual inspection, the proposed decomposition method (Nd=6) can significantly reduce aliasing artifacts. Image (F) was
reconstructed from random scheme (C) by standard CS, showing some aliasing artifacts.
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and without decomposition (Fig. 3B), and random under-
sampling (Fig. 3C). Both had the same sampling rate, the
same fully sampled central phase encoding lines and the same
total energy. The CS parameters (α and β) used here were
optimal for both equidistant and random sampling schemes.

3.3. Selective image artifact evaluation

We used artificial MR data in the human observer
experiment for selective image artifact evaluation. Raw
noisy data with mean signal-to-noise ratio of 3.0, as
measured in k-space, was simulated by adding Gaussian
distributed noise independently to the real and imaginary
channels of the k-space Shepp–Logan phantom. It was then
equidistantly undersampled by different reduction factors to
simulate different test data sets. These simulated data sets
were decomposed into Nd data subsets and reconstructed
with CS. To examine the effectiveness of the decomposition
only, we used the standard CS model without edge detection.
A final image was then obtained by aggregating these Nd CS
reconstructions in k-space. A total of 12 test images, with a
wide range of reconstruction qualities, were created using
sampling ratios of 0.54 and 0.31 and numbers of decompo-
sition Nd=1–6.
t

t

To compare the performance of CS using decomposition
with regard to individual types of artifacts, a DSCQS
experiment was employed [17], where noise, blur, aliasing
and overall image qualities were rated by human observers
for test images created from Shepp–Logan phantom.
DSCQS is considered the most reliable method for
subjective testing by the International Telecommunication
Union of the television industry (Rec. ITU-R BT.500-10).
These 12 test images were presented to the human observer
in a random order, with each image displayed twice [17].
Six engineering students were recruited for participating in
this experiment. Image quality ratings from the different
subjects were averaged to reduce intersubject variation, if
any. Further details about the DSCQS experiment can be
found in Ref. [17].

3.4. Perceptual difference model (Case-PDM)

Since the reconstruction experiment generated thousands
of test images using different parameters, we used a
perceptual difference model (Case-PDM) to objectively
evaluate the image quality of reconstruction algorithms.
PDM mimics human vision system to quantify the visual
difference between the test and reference images. The
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reference image was the inverse Fourier transform of the full
k-space data, while the test images were reconstructed from
undersampled k-space data by using GRAPPA and CS
+GRAPPA. The output of PDM is a spatial map representing
the magnitude of differences that a human observer would
perceive between the input images [17]. This map can be
summed over a region of interest (ROI) with relevant
anatomy to give a scalar PDM score. In this paper, we chose
the ROI to be the mask of the image. Zero score indicates the
best image quality [17].

3.5. Comparing CS+GRAPPA to GRAPPA and two-step
iterative GRAPPA

We used Data set 2, a water phantom, to evaluate the
performance of the proposed method when applied to PPI.
Standard GRAPPA [5], a two-step iterative GRAPPA (i.e.,
coil calibration data are from full k-space of previous
standard GRAPPA reconstruction) [18], and the proposed
CS+GRAPPA reconstructions were used in this comparison
study. Case-PDM was used to evaluate the images.

The performances of GRAPPA and CS+GRAPPA were
further evaluated using two sets of in vivo data: Data sets
3 and 4 (i.e., one four-channel brain data and eight-
channel cardiac data). For both data sets, we used an Nd
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reconstructions.
4. Results

4.1. Single-channel reconstructions

4.1.1. Comparison of uniform and random sampling
When the standard CS model (Eq. 3) was directly applied

to equidistantly undersampled Cartesian k-space data,
coherent aliasing artifacts were found, as expected
(Fig. 3D). Random decomposition of equidistant measure-
ments led to similar or reduced aliasing artifact compared to
the standard CS of random measurements (Fig. 3). This
means that decomposition reduced aliasing artifacts at least
as effectively as standard CS. However, blurring was
introduced when six decompositions were used (Fig. 3E).
More decompositions further decrease aliasing artifacts, at
the expense of computational load and of blurring. These
general observations were observed over a wide range of
reduction factors and sampling patterns.

4.1.2. Subjective evaluation of artifacts
We next used a DSCQS human observer experiment to

study selective artifact reduction performance of the
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decomposition method on CS reconstructions. Noise, blur,
aliasing and overall quality ratings from different subjects
were first averaged to give aggregate artifact-specific scores.
Fig. 4 shows the subjective artifact ratings. The noise rating
dropped to a stable value when two decompositions were
used, suggesting that Nd=2 is sufficient for noise reduction.
When the number of decompositions Nd increased, aliasing
ratings worsened, while blurring ratings consistently im-
A
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C

F

Fig. 5. Images from different algorithms for eight-channel MR phantom data unde
compared to reconstructions from undersampled data using GRAPPA (B), iterativ
model. Images (E–G) are perceptual difference maps corresponding to reconstruc
0.77) than both GRAPPA (PDM=1.74) and iterative GRAPPA (PDM=1.34). Alia
determined by visually inspecting reconstructions (B–D) and their PDM maps.
proved. The overall image quality improved when more
decompositions were used.
4.2. PPI reconstructions

4.2.1. Water phantom data
Using an eight-channel head coil, 3-T MR water phantom

data, we simulated a partial k-space parallel imaging
D

G

rsampled by ORF=4 and ACS=20. The full k-space reference image (A) is
e GRAPPA (C) and CS+GRAPPA (D) with the edge and joint sparsity CS
tions (B–D). CS+GRAPPA reconstruction has better image quality (PDM=
sing artifacts were almost completely removed by the proposed method, as
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acquisition using an outer reduction factor (or “ORF,”
defined as reduction factor of data outside ACS) of 4 with 20
ACS lines. Standard GRAPPA, two-step iterative GRAPPA
and the proposed CS+GRAPPA reconstructions were applied
to the same data. The three GRAPPA reconstructions and
their perceptual difference maps, along with the reference,
are shown in Fig. 5. The edge- and joint-sparsity-based CS
model led to an almost artifact-free reconstruction, while
standard GRAPPA reconstruction had significant aliasing
artifacts. Two-step iterative GRAPPA also did little to reduce
aliasing artifacts.

4.2.2. In vivo data
Figs. 6 and 7 show that CS+GRAPPA significantly

improved image quality as compared to standard GRAPPA,
as determined both by visual inspection and by PDM score.
CS+GRAPPA significantly improved image quality of the
brain data set by an average of 1.7 times and 2.3 times for
ORFs of 2 and 4, respectively, and was able to generate
reliable reconstructions with smaller ACS sizes than
standard GRAPPA. Similar observations were obtained
with a variety of data sets and with a variety of ORFs and
ACS sizes.

As shown in Fig. 6, a comparable quality reconstruction
can be achieved by CS+GRAPPA and GRAPPA. However,
CS+GRAPPA needed almost half as many samples and
much less ACS data.

At an ORF of 4, an ACS size of less than or equal to 13
(i.e., 5.08% of full data with a total sampling rate of 28.8%)
was not feasible for standard GRAPPA reconstruction.
However, this small ACS size was not a problem for CS
+GRAPPA, producing acceptable image quality for the brain
data set even with ACS of 4 (i.e., 1.56% of full data with a
total sampling rate of 26.2%). The cardiac data set showed
similar patterns. CS+GRAPPA achieved an 81% average
improvement in image quality over GRAPPA for the same
sampling rate (Fig. 7).
5. Discussion and conclusion

In this report, we have shown that CS reconstruction is
possible and useful in fast MRI coherent acquisitions. Our
CS+GRAPPA is able to accelerate GRAPPA imaging,
achieving a quality GRAPPA reconstruction with both a
higher reduction factor and less ACS data. The improvement
of this method is the ability to use CS reconstructions for
GRAPPA kernel calibrations by decomposing equidistant
samples into multiple, random subsets. We found that this
method can significantly reduce coherent aliasing and noise
artifacts while enhancing image quality for regularly under-
sampled MRI data. We found that two decompositions were
sufficient to significantly reduce coherent aliasing and noise
artifacts (Fig. 4). The advantage of decomposition is that it
randomizes measurements in each subset so that the
incoherence between the sampling matrix and the sparsifying
matrices is better satisfied. As a result, we were able to apply
CS to an undersampled equidistant data set and improve
reconstruction quality. Numerical results in in vivo parallel
MR data sets demonstrated that GRAPPA reconstruction can
be significantly improved — PDM scores were halved on
average with various sampling rates ranging from 7% to
40%. CS+GRAPPA allowed the same Case-PDM scores as
standard GRAPPA using about half the number of samples.
The theoretical limit of GRAPPA is never approached
because of limitations in artifacts [19]. Therefore, even
though the theoretical minimum sampling rate is the same
with CS+GRAPPA, it can actually be used for a faster and
better PPI.

Using a standard CS algorithm, decompositions reduced
coherent aliasing and noise artifacts at the expense of
increased blurring. Due to the variable density sampling
scheme, in which high-power, lower-frequency samples are
more prevalent, CS reconstructions from these few samples
cannot completely recover the missing high-frequency
samples, giving aggregated (average) k-space data with
degraded content at high frequencies. To address the
blurring issue, we used an edge- and joint-sparsity-guided
CS reconstruction, which was able to recover more accurate
and sharp images with relatively few measurements
[16,20]. This method differs from other image processing
methods, such as low-pass filtering, which cannot eliminate
aliasing artifacts.

The major computational load comes from the CS
reconstructions for each decomposition and each coil.
However, this computational load can be relieved both
through parallel implementation of the algorithm and through
use of an optimized CS algorithm. We compared a fast TVL1
CS algorithm [21] to a nonoptimized TVL1 CS algorithm [3].
We found that the fast algorithm was about 4.6 times faster
than the nonoptimized algorithm when the codes were run on
the same desktop PC (Dell Inspiron with Dual-Core Intel 3.5-
GHz CPU and 3-G memory). A Graphic Processing Unit
(GPU) processing can further accelerate the CS computation
a few hundred times [22]. Thus, with proper code
optimization and implementation, we would not expect this
extra load to hinder the application of the proposed method in
the clinical environment.

There are several potential improvements with our
algorithms. First, parameter tuning is an issue because of
the sensitivity of CS algorithm. This issue can be solved
with further research. The parameters α and β are directly
related to noise level and sample size (Eq. 3). Noise level
can be measured prior to the actual experiment or estimated
using local variances, etc., and sample size is known once
the sampling pattern is determined. We can account for
variations in parameters α and β by normalizing with
respect to image size and sample size, after which the
parameters could mainly depend on noise level. We need a
future study to confirm this. Second, the effectiveness of the
edge-based CS model relies on accuracy of edge mask
matrix w obtained from standard CS model. More accurate
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edge detection methods from incomplete/noisy measure-
ments will allow further reduction of aliasing artifacts by
the decomposition method with better edge preservation
and even less blurring. The LMI-based edge detection
method proposed in Section 2.3 does not work efficiently
when there are still aliasing and noise in the image. A better
method might be to detect edges directly from the
undersampled measurements (in k-space) instead of from
the image reconstructed from the undersampled measure-
ments. Third, theoretical justification of the edge-based CS
model has been completed if wij is set to be 0 when pixel (i,
j) falls on edge. However, in practice, some preliminary
experimental results show that a slightly better reconstruc-
tion can be obtained if a continuous scalar number between
0 and 1 is assigned to wij. As this needs further theoretical
justification, we decided not to use it in our reconstructions.
Last, a better way to aggregate CS reconstructions from
different decompositions could further improve the result.
We used a simple average. A better approach might be able
to maximize the conditional probability.

The idea of decomposition, edge and joint sparsity can all
be easily applied to other CS models, for instance, the Lp
(0bpb1) quasi-norm constrainedmodel [23,24]. The proposed
CS method can be easily adapted to other PPI techniques. For
instance, it might be possible to estimate SENSE [4] coil
sensitivity maps from intermediate CS reconstructions, which
can then be used to unfold aliased image acquired by
equidistant sampling. Thus, a SENSE reconstruction without
needing prescan for coil sensitivity maps might be made
possible. Our proposed CS+GRAPPA method might be
especially suitable for dynamic MRI such as cardiac imaging
in which all time frames share similar edge information of the
same imaged object. In this case, reconstruction from the
previous frame might be able to provide reliable edge
information for reconstruction of the next frame.
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