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Abstract. During image denoising, it is often difficult to balance between the

removal of noise and the preservation of contrast and fine features, especially
when the noise is excessive. We propose to efficiently balance the two using
segmentation and more general geometry extraction transforms. Explained in
Nonlocal-means (NL-means) framework, we introduce mutual position function

to ensure averaging is only taken over pixels in the same segmentation phase,
and provide a convolution kernel and weight function selection scheme to fur-
ther improve the performance. To address unreliable segmentation due to more
excessive noise, we use feature extraction transform that is more general than

segmentation and less sensitive to noise. Unlike most denoising approaches that
only work for one type of noise and/or involve heuristic parameter tuning, the
proposed method comes with an automatic parameter selection scheme, and
can be easily adapted for various types of noise, ranging from Gaussian, Pois-

son, Rician to Ultrasound noise etc. Comparison with the original NL-means
as well as ROF, BM3D, K-SVD on various simulated data, MRI and SEM
images indicates potentials of our method.

1. Introduction. Image denoising is a crucial process to remove noise from im-
ages for direct visualization or further image analysis. The biggest challenge in
image denoising is the balance between the removal of noise and the preservation
of salient features, like edges and fine structures. Parameter selection is also an
issue, especially when the noise is inhomogeneous. There have been some works
aiming to remove noise while preserving edges. These include PDE/variational
methods [1, 2, 3, 4], Bayesian approach [5], adaptive smoothing [6], bilateral filter-
ing [7, 8, 9], hybrid methods [10], NL-means [11] and its improvements and variants
[12, 13, 14, 15, 16, 17, 18, 19, 22, 23]. However, most existing methods assume that
the noise is of a specific type and/or homogeneous (with fixed parameter(s)). Since
real images usually contain various types of noise, the application scope of these
methods is narrow. They fail to preserve features well when the noise is excessive,
thereby leading to inefficient recovery for heavily contaminated images. In this pa-
per, we propose a fully automatic scheme and its variants to remove inhomogeneous
noise of various types while preserving image geometry. This scheme outperforms
most of the existing methods, especially when there is excessive noise.
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The proposed method is explained using NL-means framework. Instead of taking
the local structures into account, NL-means method explores the similarity and
repetitive information in the whole image, i.e., non-locally. Suppose the noise-free
image u(x) is defined in the bounded domain Ω ⊂ R2. Let the observed noisy image
be v = u+n with n an additive white Gaussian noise. Then the NL-means algorithm
states that the estimated intensity of pixel x is a Gaussian weighted average of the
intensities of all the pixels in the image:

NL(v)(x) =
1

C(x)

∫
Ω

w(x, y)v(y)dy (1)

where

w(x, y) = exp

(
−
∫
R2 Gα(t)|v(x+ t)− v(y + t)|2dt

h2

)
and C(x) =

∫
Ω

w(x, y)dy.

Here Gα(t) is a Gaussian convolution kernel with standard deviation α, and h acts

as a filtering parameter. If we denote D(z) = e−z2

(a kernel function used to define

weights w), then the weight w(x, y) is computed as D

(√∫
R2 Gα(t)|v(x+t)−v(y+t)|2dt

h

)
.

In practice, the integration is substituted by summation, and to save the compu-
tation cost, two local windows are employed in the implementation. One is the
similarity window N(0), a square neighborhood of the origin, that substitutes R2

in the definition of weight w. The other one is search window S(x) that substitutes
the whole image domain Ω in the weighted average equation (1). Since enlarging
the search domain beyond a certain size will not guarantee a dramatic improvement
of performance but at the cost of computation, the search window is fixed as 15×15
in practice [11].

To remove excessive noise, a high h value is usually used in NL-means, but it
ends up with loss of fine features especially edges, leading to blurry boundaries or
loss of contrast. To solve these problems, instead of averaging over the whole search
window as in the original NL-means, we only average over the same phase. More
specifically, as illustrated on the right of Figure 1, we call the blue object in the
middle one phase (corresponding to level set function ϕ < 0 [24]) and the white
background another phase (level set function ϕ > 0). Suppose A is a pixel in the
background with excessive noise (corresponding to phase ϕ > 0) and is close to the
border ϕ = 0. Our proposed method removes noise at A by only using points like
B located in the same phase as A, but not C or D which are in different phases
and whose intensities are very different than that of A. Contributions of C,D to
denoising at A lead to loss of contrast there. In comparison, in the original NL-
means, even though the neighborhoods of A and C are not that close, but a larger h
value brings ∥v(A)−v(C)∥22,a/h2 closer to 0, causing weight w(A,C) to be large. As
a result, pixel C contributes significantly to the smoothing of A, causing decrease
of contrast at A.

The paper has the following four main contributions:

• Present segmentation boosted NL-means (SNL-means) that utilized segmen-
tation to remove excessive additive Gaussian noise while preserving contrast.
Automatic selection of parameter is also addressed for piecewise constant and
smooth images respectively. To reduce the computational burden, block-wise
implementation of SNL-means is discussed.

• Develop transform based NL-means (TNL-means) that preserves more image
geometry when segmentation is not reliable due to more excessive noise.
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Figure 1. Illustration of the motivation of the proposed method,
where a level set function ϕ is used to represent phases.

• Provide mathematical validation to block-wise SNL-means from Bayesian per-
spective and pixel-wise SNL-means from nonparametric regression perspec-
tives. Selection of convolution kernel and weight function is also addressed in
detail.

• Generalize SNL-means to Poisson, Rician and Ultrasound noise removal.

The rest of the paper is organized as follows. Section 2 develops pixel-wise and
block-wise SNL-means filter which takes full advantage of segmentation with auto-
matic filtering parameter configuration. TNL-means is also presented to substitute
SNL-means when the noise is too excessive to trust segmentation out of the noisy
observation or its pre-smoothed variants. Section 3 focuses on mathematical justifi-
cation of SNL-means in terms of Bayesian inference and nonparametric regression.
To address other types of noise including Poisson noise, Rician noise and multiplica-
tive noise, several variants of our SNL-means are stated in Section 4. The numerical
implementation and more results are shown in Section 5, followed by conclusion in
Section 6.

2. Proposed Scheme. In this section, as done similarly in the original NL-means,
we assume that the observed noisy image v is related to the underlying clean image
u by: v = u + n with n independent Gaussian noise. Sections 2.1 and 2.2 explain
how to incorporate segmentation and geometry extraction transform respectively
to remove excessive noise while preserving geometries. Generalization to removal of
other noise types will be presented in Section 4.

2.1. Segmentation Boosted NL-means filter (SNL-means).

2.1.1. Mutual Position Function. We introduce the mutual position functionm(x, y)
to describe whether pixels x and y lie in the same phase as follows:

m(x, y) =

{
1, x, y lie in the same phase

0, o.w.
.

Phase information can be obtained from image segmentation. Since segmentation is
not the focus of this paper, we just apply Mumford-Shah segmentation method [1].
We use Chan-Vese method [25], which is a level set implementation of Mumford-
Shah and works well for piecewise constant images. If there are only two phases in
an image, one level set function ϕ is enough to describe them: {x|ϕ(x) > 0} and
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{x|ϕ(x) < 0} while {x|ϕ(x) = 0} is the object contour. When there are four phases,
two level set functions ϕ1, ϕ2 are needed [37]. For instance, {x|ϕ1(x) > 0, ϕ2(x) > 0}
represents one phase. By the four color theorem from graph theory, two level set
functions suffice to distinguish all objects in an image. Let H(t) be the Heaviside
function defined as

H(t) =

{
1, t ≥ 0

0, t < 0
,

then we could define m(x, y) as below:

m(x, y) =

{
H(ϕ(x)ϕ(y)), 2 phases

H(ϕ1(x)ϕ1(y))H(ϕ2(x)ϕ2(y)), ≥ 3 phases

where ϕ(x) is the level set function obtained by the 2 phase Chan-Vese segmentation
model and ϕ1, ϕ2 are obtained by the multi-phase Chan-Vese segmentation model.

2.1.2. SNL-means. With the mutual position function m(x, y), we define a new
weight as

w(x, y) =
1

C(x)
exp

(
− 1

h2
∥v(N(x))− v(N(y))∥22,α

)
·m(x, y)

where the normalizing constant

C(x) =
∑

y∈SK(x)

exp

(
− 1

h2
∥v(N(x))− v(N(y))∥22,α

)
.

Here v(N(x)) represents the observed image patch in similarity window N(x) cen-
tered at pixel x and ∥·∥2,α represents the Euclidean distance weighted by Gaussian
convolution kernel Gα. The segmentation boosted nonlocal means filter is then
defined as:

SNL(v)(x) =
∑

y∈SK(x)

w(x, y)v(x) (2)

SK(x) is a spatial neighborhood of x that contains at least K pixels in the same
phase as x. For a fixed pixel x near the boundary, m(x, y) tends to be 0 for some
pixel y, leading to insufficient number of contributing pixels if the size of the search
window S(x) is fixed (nonadaptive). To ensure similar number of contributing y’s
in search window of every x, we look for an adaptive window SK(x) as follows. At
first we define the candidate based on the segmentation and square windows:

Sk(x) = {y ∈ Ω |m(x, y) = 1, ∥x− y∥∞ ≤ k}

where

∥x∥∞ = max{|x1|, |x2|}

and k corresponds to the radius of square windows. To ensure comparing at least
K pixels, we set our adaptive search window SK(x) as Sl(x) where

l = argmin{k > 0 | |Sk(x)| ≥ K}

and |Sk(x)| the cardinality of Sk(x). If the phase containing x has fewer pixels than
K, we define this whole phase as SK(x).
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2.1.3. Filtering Parameter h. Selection of the filtering parameter h plays a vital
role in the proposed SNL-means algorithm. Here we describe how to automatically
select the parameter h for piecewise constant images and piecewise smooth images
separately.

• Piecewise Constant Images
For the sake of simplicity, suppose the underlying clean image u : Ω → R2

is piecewise constant with 2 phases such that one level set function ϕ is enough
to describe them. Let Ω1 = {x ∈ Ω |ϕ(x) > 0} and Ω2 = {x ∈ Ω |ϕ(x) < 0},

u(x) =

{
c1, x ∈ Ω1

c2, x ∈ Ω2
,

where c1, c2 are constants. Under the assumption of additive noise , we have
the observed image

v(x) = ci + ni(x), x ∈ Ωi, i = 1, 2

where ni(x) are independent and identically distributed (i.i.d.) within Ωi, i =
1, 2. Using the uniformly minimum variance unbiased (UMVU) estimator [26],
we get the best estimator for noise variance in each phase as

Var(ni) =
1

|Ωi| − 1

∑
x∈Ωi

(
v(x)− ci

)2
, i = 1, 2.

Then the filtering parameter hi used in the i-th phase (i = 1, 2) is chosen as

hi =
√
Var(ni).

In the multi-phase case, we still employ the unbiased estimation of the noise
variance in each phase to obtain the phase-wise filtering parameter h’s.

• Piecewise Smooth Images
Let the underlying image u(x) be piecewise smooth with independent and

spatially variant noise n(x) where n(x) has mean zero and variance σ2(x). By
the assumption, the mean and variance for the conditional probability are as
below:

E(v(x)|u(x)) = u(x), Var(v(x)|u(x)) = σ2(x).

In this case, there are no closed forms for the mean and variance and thereby
we employ the nonparametric dual model to estimate the noise level locally
[27]: at pixel x, we use the nearest four-pixel neighboring set, denoted by
N4(x), as its sample space and obtain the Gasser-Sroka-Jennen-Steinmetz
pseudo-residual

ϵ(x) =

√
4

5

(1
4

∑
y∈N4(x)

v(y)− v(x)
)

which guarantees that E(ϵ(x)2) = σ2(x). By taking the average to correct the
bias, we define the unbiased local variance estimator as:

V (x) =
K

K − 1

{(
1

K

∑
y∈N(x)

ϵ2(y)

)
−
(

1

K

∑
y∈N(x)

ϵ(y)

)2}
where N(x) is the nearest K-pixel neighboring set of pixel x. Finally, h2(x) =
βV (x) where β is between 0 and 1 and is set as .5 in our experiments and the
results are not sensitive to the choice of β.
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The key ingredient in the proposed method SNL-means is the mutual position
function defined from segmentation. The improvement over the original NL-means
is significant when the segmentation is accurate. In Figure 2, we compare the
results of NL-means and SNL-means (fed with ground truth segmentation) on a
noisy MRI brain image with intensity range [0,230] and additive zero-mean Gaussian
noise with 10% (σ = 23) noise. It is observed that the SNL-means leads to sharper
reconstructed image or anatomically clearer separation of different phases (gray
matter, white matter and cerebral spinal fluid).

Figure 2. Comparison of NL-means and SNL-means. First row
from left to right: clean image with intensity [0,230], noisy image
with 10% noise σ = 23, result by NL-means filter, proposed method
with the ideal partition. Second row is the amplified section corre-
sponding to the first row.

2.2. Transform based NL-means filter. In practice, one does not have the ex-
act segmentation of the ground truth but only the noisy observation. When the
observed noisy image has excessive or spatially variant noise, it is more difficult to
distinguish different phases. As the noise level grows, image segmentation gets more
and more challenging: fine features are usually missed and some artificial edges are
created. In this case, we have the following three options:

• Pre-smooth. Pre-smooth the noisy image to get a cleaner image, on which
we apply segmentation. This approach is the easiest and works only when
the noise level is low. But the segmentation depends on the selection of the
pre-smooth approach and is not accurate when noise is excessive. Most of the
existing denoising approaches tend to loose salient features while removing
excessive noise. Loss of salient features in the pre-smoothed image causes
segmentation errors.

• Iterative denoising. Alternately segment and smooth images using SNL-
means in an iterative way: apply segmentation on the noisy observation, then
apply segmentation boosted NL-means on the original noisy image to get one
cleaner image, which is segmented again for better phase information that
in the next round helps remove noise from the original noisy image. Repeat
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the procedure until the adjacent smoothing results are close. This method is
intuitive but expensive due to iterations.

• Geometrical structure extraction transform. Substitute segmentation
by some more general transform that is less sensitive to noise but detect
more intrinsical geometric structures. Then replace mutual position function
defined on segmentation by some new function (again part of the weight def-
inition) describing geometric structure similarity. Segmentation only detects
edges, while more general geometric structure extraction transforms detect
more geometries including edges. In what follows, we explain this method in
detail.

The idea is to apply certain transform catching the main features of the image
and to reduce the impact of noise during the restoration step. We demonstrate
the idea using contourlet transform, but any other general transform could be used.
Contourlet is a pyramidal directional transform which represents C2 natural images
efficiently using contour segments [28]. Due to the contour-like edges in many real
world images, the contourlet transform is appropriate to be incorporated into the
computation of the local weight. The proposed transform based NL-means (TNL-
means) scheme is

TNL(v)(x) =
∑
y

w(x, y)v(y), (3)

with weight w(x, y) the product of weighted intensity similarity and geometry sim-
ilarity defined as below

w(x, y) =
1

C(x)
exp

(
− η1
h2
1

∥v(N(x))−v(N(y))∥22,α−
η2
h2
2

∥T (v)(N(x))−T (v)(N(y))∥22,β
)

where C(x) is the normalization factor, η1, η2 are balancing constants and h1, h2

are respective filtering parameters. In our later experiments, h1 and h2 are set
as the standard deviation of the noise while η1, η2 are adjustable values within
(0, 1). Here T is designated as the combination of three steps: contourlet transform,
thresholding in the transform domain, and inverse contourlet transform back to the
image domain.

In Figure 3 and Table 1 we demonstrate that TNL-means outperforms thresh-
olding based contourlet approach and NL-means respectively. We add the same
additive Gaussian noise with σ = 23 as in Figure 2 to the clean MRI brain image.
We can see in Figure 3 that the contourlet restored image after thresholding in
the transform domain captures certain geometries of the original image while hav-
ing much noise remained (middle left). The proposed TNL-means method takes
advantage of the geometric information to build the weight and removes the noise
more efficiently (right two images). In Table 1, the comparisons with NL-means
for three different noise levels 10% (σ = 24.6), 15% (σ = 36.9), 20% (σ = 49.3)
are listed. We use three quantitative measures: peak-to-noise ratio (PSNR), root of
mean squared error (RMSE) and structural similarity (SSIM) [29]. It can be seen
that the proposed method consistently gives the highest PSNR, lowest RMSE and
the highest SSIM. The higher the noise level, the more the TNL-means outperforms.

In practice, depending on the structure of the image, contourlet transform based
weight may not be the most appropriate candidate, and other filter bank based
transforms may be more applicable, e.g. curvelet transform [20] and shearlet trans-
form [21].
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Figure 3. Comparison of thresholding based contourlet approach
and contourlet based NL-means. From left to right: T (v) based
on contourlet transform with thresholding, the amplified section
of T (v), recovered image by our proposed method η1 = 0.8, η2 =
2, h1 = h2 = σ and the corresponding amplified section.

Table 1. Quantitative comparison of NL-means and TNL-means
on denoising of a T1 brain image

σ of noise 24.6 36.9 49.3
Method Noisy NLM Ours Noisy NLM Ours Noisy NLM Ours
PSNR 20.29 29.07 29.68 16.80 26.70 27.45 14.42 24.67 25.64
RMSE 24.66 8.98 8.37 36.85 11.79 10.82 48.47 14.89 13.32
SSIM 0.43 0.84 0.85 0.30 0.74 0.77 0.22 0.66 0.71

2.3. Block-wise SNL-means. In this subsection, we present the block-wise SNL-
means filter. For natural images with large size, pixel-wise SNL-means filtering will
cost too much time on comparing the weighted patches. To lower the computation
burden, we follow the idea in [22] to develop block-wise SNL-means. The idea is
to use SNL-means to obtain estimate of the clean image in a block by taking the
weighted average of the most similar blocks and then get the recovered intensity at
a specific pixel x by averaging over all the estimators of intensities at x given by all
the blocks containing x. Rather than choosing all the blocks in the search window,
we requires the centers of the contributing blocks to lie in the same phase as that
of the target block.

Specifically, we first partition the whole image domain Ω into overlapping blocks

{Bi}ki=1 satisfying Ω =
∪k

i=1 Bi. Then we combine the information from segmenta-
tion to the nonlocal means formula:

û(Bi) =
k∑

j=1

w(Bi, Bj)v(Bj) (4)

where

w(Bi, Bj) =
1

C(Bi)
M(Bi, Bj) exp

(
−
∥v(Bi)− v(Bj)∥22,α

h2

)
and C(Bi) is a normalizing constant. Here M(Bi, Bj) is a block-wise mutual po-
sition function and for simplicity we only apply the centers of the two blocks of
interest:

M(Bi, Bj) = m(xi, yj)

where xi and yj are the center pixels of blocks Bi and Bj .
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Let B(x) = {Bi|x ∈ Bi ⊂ Ω} be the set of all the blocks including x, the
estimated intensity at each pixel is calculated as below:

û(x) =

∑
B(x) û(Bj(x))

|B(x)|
. (5)

However, there is a trade-off between the denoising performance and the compu-
tation complexity. Block-wise implementation will lower the computation time
tremendously but at the cost of the quality which will be shown in Section 5 Table
7.

3. Mathematical validations. In this section, we provide mathematical valida-
tions, in more general setup, of the proposed block-wise SNL-means from Bayesian
perspective (Section 3.1) and the pixel-wise SNL-means version using non-parametric
regression (Section 3.2). Based on the validations, we generalize the proposed
scheme to deal with images with other noise types, e.g., Poisson, Rician and Ultra-
sound noise in Section 4.

3.1. Bayesian Interpretation of Block-wise SNL-means. In [14], Kervrann
et al. derived the NL-means filter in perspective of Bayesian framework which states
the relationship between the weight function in NL-means filter and the probability
density function (pdf) of the white Gaussian noise. We extend their derivation
to general additive noise. Various local convolution kernels relating the structural
prior of images are also considered.

As before, we assume v = u+ n where n is any general independent noise and u
is piecewisely constant or smooth. Let {Ωi}i be a partition of the image domain Ω
such that

u(x) =
∑
i

ui(x), x ∈ Ω

where

ui(x) = u(x)|Ωi , ui(x)|Ωc
i
= 0.

For every x ∈ Ω, we denote the vectorized u and v taken in a neighborhood of x
(similarity window N(x) of size

√
k ×

√
k) by

u(x) =

u(x1)
...

u(xk)

 v(x) =

v(x1)
...

v(xk)


Let û be an estimator for u, and define the expectation of loss associated with

this estimator as

E(L(u(x), û(x))) =
∑

u(x)∈Λ

L(u(x), û(x))p(u(x)|v(x)).

where Λ ⊆ Rk is the range of u(x).
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By choosing L(u(x), û(x)) = |u(x) − û(x)|2 and letting p be a probability, the
optimal estimator is computed as below:

uopt(x) = argminû E(L(u(x), û(x)))

=
∑

u(x)∈Λ

u(x)p(u(x)|v(x))

=
∑

u(x)∈Λ

u(x)p(u(x),v(x))

p(v(x))

=
∑

u(x)∈Λ

u(x)p(v(x)|u(x))p(u(x))∑
u(x)∈Λ p(v(x)|u(x))p(u(x))

Let SK(x) be the neighborhood of x defined as in Section 2.1.2. By the assump-
tion that patches with centers within the same phase follow the same distribution,
the neighboring patches with centers in SK(x) can be considered as the realizations
of the patch u(x). Assuming u(x) is uniformly distributed in {u(y) | y ∈ SK(x)}
which replaces Λ, i.e., there is no preference to choose one neighboring patch from
another, we have

p(u(x)) =
1

|SK(x)|
.

As K → ∞ and thereby the number of the neighboring patches increases, the law
of large numbers asserts:∑

y∈SK(x)

u(y)p(v(x)|u(y)) 1

|SK(x)|
→

∑
u(x)∈Λ

u(x)p(v(x)|u(x))p(u(x))

∑
y∈SK(x)

p(v(x)|u(y)) 1

|SK(x)|
→

∑
u(x)∈Λ

p(v(x)|u(x))p(u(x)).

Then one gets an approximated uopt as below:

uopt(x) =
∑

y∈SK(x)

u(y)p(v(x)|u(y))∑
y∈SK(x) p(v(x)|u(y))

.

Considering v(y) as the realization of u(y), we get an estimation of u in the similarity
window N(x)

û(x) =
∑

y∈SK(x)

p(v(x)|v(y))∑
y∈SK(x) p(v(x)|v(y))

v(y). (6)

Next, we assume n is a Gaussian random field and n(x) is a multivariate Gaussian
random variable therein. Note that

v(x) = v(y) + n(x, y), with n(x, y) = u(x)− u(y) + n(x)− n(y), (y ̸= x).

If x and y are very close to each other within the same phase, then u(x) ≈ u(y). In
addition, to embody certain regularity of the original image between u(x) and u(y),
we assume that n(x, y) = R−1E where E ∼ N (0, σ2I) and R ∈ Rk×k is symmetric
positive definite. Thus we get

p(v(x)|v(y)) ∝ exp

(
− 1

2σ2
(v(x)− v(y))TRTR(v(x)− v(y))

)
.
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It’s obvious that Var(n(x, y)) = (RTR)−1 and ∥R(v(x) − v(y))∥2 is a semi-metric
measuring the closeness of two image patches. In the original NL-means, RTR is
chosen as a square matrix

RTR =


d1 0 0 · · · 0
0 d2 0 · · · 0

· · · · · ·
0 0 · · · 0 dk


whose diagonal is the vectorized 2D Gaussian convolution kernel Gα without taking
phase information into account. In this case, equation (6) leads to the same formula
as (5) in Section 2.3. The diagonal entries in RTR could come from Gaussian con-
volution kernels or more generally ones like rectangular disk, circular disk, average
(constant) as shown in Figure 4. We have tested some piecewise constant images
and piecewise smooth images using the listed kernels and found that for piecewise
constant images, flatter kernels enhance denoising performance. However for most
images with more intensity variations, more exponential-like kernels are preferred.
The denoising assessment for each kernel in terms of PSNR for a 2-phase toy image
and a T1 MRI image are shown in Table 2.

Figure 4. 7× 7 discretized convolution kernels
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Table 2. PSNR comparison for convolution kernels

rectangular disk circular disk Gaussian average
Toy image 36.60 37.12 37.34 33.45
T1 MRI 29.14 28.93 28.52 27.89

3.2. Nonparametric Regression Understanding of Pixel-wise SNL-means.
Next we understand the proposed pixel-wise SNL-means filter in terms of local
smooth regression. Define adaptive search window SK(xl) for a fixed pixel xl as in
Section 2.1.2. To get an estimate of the clean image intensity at xl, we use sample
pairs composed of intensities at each pixel in the search window and those in their
similarity windows, i.e., we use sample pairs {(v(xi), Yi)} where v(xi) ∈ R, 1 ≤ i ≤
K with xi ∈ SK(xl), and Yi ∈ Rk−1 the observed column-wise stacked intensity

vector of the neighbors (similarity window of size
√
k×

√
k) of pixel xi except at xi.

The Nadaraya-Watson kernel-weighted average [30] provides an estimate of u at xl

as

û(xl|Yl) =

∑
j:xj∈SK(xl)

f(Yl, Yj)v(xj)∑
j f(Yl, Yj)
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where the weight function

f(Yl, Yj) = D

(
∥R(Yl − Yj)∥2

h

)
.

Here R is a diagonal matrix defined as in the previous section and D(·) is a kernel
function satisfying the conditions:

(i) positivity: D(t) ≥ 0
(ii) decay as distance increases: limt→∞ D(t) = 0 and limt→0 D(t) = 1.
(iii) unit volume:

∫∞
0

D(t) dt = 1

Denoting

wlj =
f(Yl, Yj)∑

j:xj∈SK(xl)
f(Yl, Yj)

=
D(∥R(Yl − Yj)∥2/h)∑

j:xj∈SK(xl)
D(∥R(Yl − Yj)∥2/h)

,

the above local linear regression can be actually obtained by solving a weighted
least squares problem:

min
u

∑
l

(
u(xl)−

∑
j:xj∈SK(xl)

wljv(xj)

)2

which is the discretization of

min
u

∫
Ω

(
u(x)−

∫
SK(x)

wv(x, y)v(y)dy

)2

dx.

In the original NL-means algorithm, the weight function is defined through se-

lecting D(t) as exponential function e−t2 and R is based on discretized Gaussian
convolution kernel. But different combinations of kernel function D and convolution
kernel lead to different weight functions. Selection of convolution kernel has been
addressed in the previous section. Next, we focus on selection of kernel function D
on removing additive Gaussian noise. Table 3 lists five kernel functions D without
normalizing constant and Figure 5 shows their respective graphs. Note D applied

on
∥R(Yl−Yj)∥2

h gives weights before normalization. For a fixed h, the principle of
selecting D is as follows: for piecewise constant images, choose D that is flatter
and more spread out, e.g. Cauchy; while for images with large intensity variation

in a small neighborhood, choose D that is more steep in the range of
∥R(Yl−Yj)∥2

h ,
e.g., exponential one if the range is inside [1, 1.5]. The reason is that for piecewise
constant images, the intensity is close to one constant for all pixels in the same
phase. Combining with the fact that larger number of contributing pixels leads to

a more robust estimate (for i.i.d. random variables ri’s, the variance of
∑N

i=1 ri/N
approaches to 0 as N goes to infinity), we expect most of the weights to be nonzero
and close to each other, which can be done by choosing a kernel function D that is
flat. From the graphs in Figure 5, it is obvious that Cauchy function is the flattest
and is thus the best choice for piecewise constant images. On the other hand for
images with various intensities, we only expect pixels with close intensities to con-
tribute more. In terms of weights, we only expect those with smaller ∥R(Yl −Yj)∥2
(h is fixed) to get larger values. Therefore, a kernel that is steep in the range of
∥R(Yl−Yj)∥2

h is preferred.
We test a piecewise constant toy image (h fixed as σ = 18.2) and a T1 MRI image

(h fixed as σ = 25.5) with different weight functions (fixing the rectangular disk as
R), and we list the results as in Table 4. For the piecewise constant toy image,
Cauchy function shows significantly better performance than the others. While for
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Table 3. Kernel functions D(t)

exponential exp(−t2)

G1

{
1− t2 if |t| ≤ 1

0 if |t| > 1

Cauchy 1/(1 + t2)

Geman-McClure[15] 1/
(
(1 + t2)2

)
Tukey

{
(1− t2)2 if |t| ≤ 1

0 if |t| > 1

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

 

 
exp
G1
Cauchy
GM
Tukey

Figure 5. Comparison of various kernel function D.

the T1 MRI image that has more intensity variations, the range of
∥R(Yl−Yj)∥2

h is
inside [1, 1.5], so as analyzed above, the result using exponential function is the
best. Furthermore, the similar conclusion will be obtained in the case of Rician
noise with the same test images.

Table 4. PSNR comparison for various kernel functions.

h exponential G1 Cauchy Geman-McClure Tukey
Toy image σ 36.71 23.37 45.01 41.94 23.33
T1 MRI σ 29.25 20.30 24.63 26.65 20.28

4. Generalization to other noise types. Section 2 addresses in detail how SNL-
means removes Gaussian noise automatically. To deal with non-Gaussian noise, we
provide two options here. One is to insert a specific noise type into the generic
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Bayesian formula (6) in Section 3.1 and see whether a closed form is computable. For
some distributions (e.g., Poisson, binomial and negative binomial), another option
is to transform the given noise to i.i.d. Gaussian noise, then apply the SNL-means
scheme thoroughly discussed in Section 2 to remove the additive Gaussian noise,
and finally transform the processed image back to the original image space. But
special care must be taken to correct the bias resulting from the inverse transform.
As some specific examples, we explain in detail how to use the proposed scheme
to remove Poisson noise (Section 4.1) in computed tomography (CT), Rician noise
(Section 4.2) in magnetic resonance imaging (MRI), and a speckle noise (Section
4.3) in ultrasound imaging.

4.1. Poisson noise. In this section, we apply our proposed method on removing
Poisson noise. Suppose the observed image v(x) follows Poisson distribution with
mean as the underlying image u(x), i.e.

P (v(x) = k|u(x)) = e−u(x)(u(x))k

k!
.

By virtue of Anscombe transform [31], i.e.

A : u → 2

√
u+

3

8
,

the image contaminated by Poisson noise is transformed to an image with approx-
imately homogeneous additive Gaussian noise. In the transformed domain, our
proposed method (Section 2.1) with estimation of the unknown additive noise level
(Section 2.1.3) can be implemented. To minimize the undesired bias generated by
the transformation, the asymptotic unbiased inverse transform is used

Ã−1 : u →
(u
2

)2

− 1

8
.

In a word, our proposed denoising scheme on Poisson noise removal is

û = Ã−1(SNL(A(v))). (7)

4.2. Rician noise. In practice, images may be complex valued and medical tech-
nicians visualize the magnitude of the images. If the noise is well modeled by a
Gaussian probability density function in the real and imaginary parts of the com-
plex data respectively, then the noise in the associated magnitude image can be
modeled as Rician noise. This noise model is used in a wide variety of data, such as
MRI, SAR [32]. Let v ∼ R(u, σ) be the observed magnitude image obeying Rician
distribution with parameters u ≥ 0 and σ ≥ 0,

p(v|u, σ) = v

σ2
e−

v2+u2

2σ2 J0

(
zu

σ2

)
, v ≥ 0,

where Jn represents the modified Bessel function of order n,

Jn(x) =
∞∑

m=0

(x2 )
n+2m

m!Γ(n+m+ 1)
.

This distribution reduces to a Rayleigh distribution if u = 0. From the expression
of Jn(x), it’s easy to see that

J0(x) =
∞∑

m=0

(x/2)2m

(m!)2
, J1(x) =

∞∑
m=0

(x/2)2m+1

m!(m+ 1)!
.
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The mean and variance of v therefore are, respectively,

E(v|u, σ) = σ

√
π

2
F

(
− u2

2σ2

)
Var(v|u, σ) = 2σ2 + u2 − πσ2

2
F 2

(
− u2

2σ2

)
.

where

F (x) = e
x
2

[
(1− x)J0(−

x

2
)− xJ1(−

x

2
)
]
.

The second moment is therefore

E(v2|u, σ) = Var(v|u, σ) + (E(v|u, σ))2 = 2σ2 + u2,

implying a denoising scheme for remove Rician noise. Based on the observation
that

E(
∑

y∈SK(x)

w(x, y)v(y)2|u, σ) = 2σ2 + u(x)2,
∑

y∈SK(x)

w(x, y) = 1

and the nonlocal estimator proposed by Wiest-Daesslé et al. [19], we present the
proposed scheme on Rician noise removal

û(x) =
√
max (SNL(v2)(y)− 2σ2, 0). (8)

4.3. Ultrasound noise. In ultrasound imaging, the observed noisy image v is
modeled as v = u+

√
u ·n [33, 34] where u is the underlying clean image, and noise

is
√
u · n with n ∼ N(0, σ2), i.e., the noise depends on u. Then v|u ∼ N (u, uσ2)

i.e.,

p(v(x)|u(x)) ∝ exp

(
−∥v(x)− u(x)∥22

2u(x)σ2

)
.

Following the reasoning in Section 3.1 and plugging the above p(v(x)|u(x)) into the
generic Bayesian formula (6), we get

û(x) =

∑
y∈N(x) m(x, y)p(v(x)|v(y))v(y)∑

y∈N(x) m(x, y)p(v(x)|v(y))

=
1

C(x)

∑
y∈N(x)

m(x, y) exp

(
−∥R(v(N(x))− v(N(y)))./2v(N(y))∥22

h2

)
v(y)

(9)

where ./ represents the entry-wise division and h can be chosen around σ.

5. More Experimental Results. Besides those results shown in the previous
sections, here we further test our algorithm and its variants on a variety of scalar
images and also compare these results with those of the standard NL-means al-
gorithm and the other state-of-the-art denoising methods. Equipped with the geo-
metric information obtained from segmentation, appropriate convolution kernel and
weight function based on the image to be denoised, the proposed framework shows
the prominence on edge preservation and noise removal. All tests were run under
Windows 7 Professional and MATLAB v7.12 (R2011a) on a laptop with an Intel
Core 2 Duo CPU at 2.8 GHz and 3 GB of memory.

Both qualitative and quantitative comparison are provided throughout this sec-
tion. For quantitative comparison, among many other criteria, two assessment
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measures are used here. One is peak signal-to-noise ratio (PSNR) which is defined
in decibels (dB) as

PSNR = 10 log10
2552

MSE
where MSE is a mean squared error between the noisy image and the clean image.
This is the main criterion used later to compare the denoising performance. An-
other one is signal to noise ratio (SNR) which quantifies the recovery by comparing
between the “ground truth” u(x) and the reconstructed image û(x). We adopt the
SNR formula in [38].

SNR = 10 log10

∑
x∈Ω

(
u2(x) + û2(x)

)∑
x∈Ω

(
u(x)− û(x)

)2 .

It’s used only for assessing the performance of the ultrasound denoising.
Four sets of tests are done to show the significant improvements of our proposed

algorithms. Note that if not specified explicitly, pixel-wise implementation is always
performed and the clean images for our tests range in [0, 255].

• The first set is to show the advantage of the pixel-wise SNL-means on piecewise
constant and smooth image denoising.

We start with a two-phase piecewise constant image containing three shapes
contaminated by white Gaussian noise with different known variances. We
apply our proposed SNL-means filter (2), the original NL-means algorithm,
total variational method (ROF) [3], block-matching and 3D filtering (BM3D)
[35] and K-SVD [36] to the same image. Optimal parameters are selected for
all. In the proposed method, filtering parameter h is set as the given noise
level, and since it is a piecewise constant image, as discussed in Section 3.2,
we replace the exponential weight function used in the original NL-means by
the Cauchy weight function.

Table 5 compares in terms of PSNR as noise variance changes. It can be
seen that across all the noise levels, the proposed method consistently and
significantly performs better than all the other methods. Figure 6 shows the
visual comparisons when the noise level is 50.

Table 5. PSNR obtained with the compared filters for the toy image

Noise level σ 10 20 30 40 50
Noisy 28.06 22.10 18.50 16.15 14.16
NL-means 34.42 32.93 30.17 28.28 26.38
Proposed 44.12 40.50 38.13 33.57 29.61
ROF 35.77 29.95 26.64 24.61 22.92
K-SVD 40.24 34.98 30.96 28.90 27.37
BM3D 42.13 34.89 31.41 29.83 27.52

Next, we test a multi-phase piecewise constant Shepp-Logan phantom im-
age. Multiple phases are obtained by using multi-phase Chan-Vese segmen-
tation model [37]. To fetch more accurate phase information, a pre-smoothed
version of the input image is favored for segmentation. Here BM3D is ap-
plied for pre-smoothing. We employ our 6-phase SNL-means filter (2) with
phase-wisely defined h (Section 2.1.3). From Figure 7 and Table 6, one
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Figure 6. Comparison of denoising performance on a two-phase
toy image. First row: noisy image with σ = 30; NL-means; pro-
posed. Second row: ROF; K-SVD; BM3D

can see that the proposed model significantly outperforms the others both
quantitatively and qualitatively.

Table 6. PSNR of various filters on a multi-phase phantom image.

Noise level σ 20 30

Noisy 22.18 18.56
NL-means 33.56 31.31
Proposed 38.57 35.59
ROF 30.30 26.95
BM3D 36.34 33.06
K-SVD 33.67 30.83

In Figure 8, we test a brain MRI image corrupted by inhomogeneous
additive Gaussian noise using iterative 3-phase piecewise smooth denoising
scheme mentioned in the beginning of Section 2.2. Unlike the NL-means using
one universal filtering parameter h, our proposed method mentioned in Section
2.1.3 estimates the inhomogeneous noise level automatically and defines the
spatially variant h accordingly. The implementation starts from the NL-means
filtering with low h and ends after two iterations of segmentation-smoothing.
One can see the original NL-means removes some fine features while iterative
denoising removes mostly random noise.

• The second test is to illustrate the quality/speed balance for piexel-wise and
block-wise SNL-means. We test using the 2-phase toy image in Figure 6
with 10% noise (σ = 27.3). There are two factors in block-wise SNL-means
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Figure 7. Multi-phase SNL-means denoising on a phantom image.
First row: noisy image with σ = 20, NL-means, proposed. Second
row: ROF, BM3D, K-SVD.

that directly affect its quality and speed. One is the block size described by
its radius r and the other one is the distance between two adjacent blocks
denoted by d. We vary both r and d to get different block-wise SNL-means
results and compare their PSNR and computation time (in seconds) with that
of SNL-means. The comparison is listed in Table 7, in which pixel-wise and
block-wise SNL-means are abbreviated as SNL and BSNL respectively. The
two numbers behind “BSNL” represent r, d respectively. It is not surprising
to see that pixel-wise SNL-means takes more time than all the block-wise
SNL-means but gives the best quality. And as r or d increases, block-wise
SNL-means is faster but pays the price of lower recovery quality.

Table 7. Comparison of pixel-wise and block-wise SNL-means de-
noising efficiency on a toy image.

Noisy SNL BSNL(3,1) BSNL(3,2) BSNL(4,2)
PSNR(dB) 19.41 34.46 28.49 27.45 26.27
Time(s) 27.24 22.96 6.01 5.76

• The third set of tests is to show the performance of the extensions of our
proposed method in removing Poisson, Rician and Ultrasound noise.

First, we compare our proposed filter (7) with NL-means based filter (i.e.,

û = Ã−1(NL(A(v)))) in Figure 9. Even though the PSNR improvement is
not much, a close visual comparison shows that the proposed method provides
better contrast, especially the buildings in the background.
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Figure 8. Comparison of NL-means and the proposed iterative
denoising method in inhomogeneous Gaussian noise removal. First
row: noisy MRI brain image with PSNR = 23.66; NL-means result
with PSNR = 30.28; iterative SNL result with PSNR = 31.00.
Second row: inhomogeneous noise added; difference from the noisy
image by NL-means and our method.

Next we add Rician noise on an eagle image as described in Section 4.2 and
test our proposed method (8). After segmenting the image into two phases,
we applied exponential and Cauchy weight functions for the phases inside
and outside of the eagle respectively. As seen from Figure 10 our proposed
method results in more noise suppression in the background and clearer outline
of the eagle.

For removing speckle noise in ultrasound images, we simulate the noisy
image in the way as described in Section 4.3. Results of our proposed method
(9) and NL-means based ultrasound denoising filter are shown in Figure
11. Since Bayesian-based NL-means filter shows better denoising performance
than some competitive state-of-the-art methods: Lee’s filter, Kuan’s filter,
SPF and SRAD [38], we restrict the comparison to in between NL-means filter
and our method. Consistently, the proposed method leads to a reconstruction
closer to the ground truth.

• Finally, we apply the SNL-means filter on a real clinical data. Figure 12
shows the result of SNL-means on a scanning electron microscopy (SEM) im-
age of mouse axons showing myelin sheath, mitochondria and microtubules.
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Figure 9. Comparison of NL-means based Poisson noise removal
and our proposed method. First row: clean image ‘cameraman’ of
size 256× 256, noisy image with Poisson noise and PSNR = 27.41.
Second row: result by NL-means based denoising with PSNR =
30.19, our proposed method (7) with PSNR = 30.60 where the
buildings in the background are preserved better.

The sharp denoising result makes it easier to investigate the mitochondria
(amount and structure) and microtubules which are affected by multiple scle-
rosis (MS).

6. Conclusion. The proposed method extracts reliable geometric information and
incorporates it to guide the denoising. In the framework of NL-means, we described
how to remove excessive inhomogeneous noise while preserving fine features. To
speed up computation, the blockwise implementation of our proposed filter is de-
scribed as well. We also adapted the idea to remove excessive noise of various types.
It appears that coupling geometry extraction and nonlocal means leads to better
denoising from both quantitative and qualitative aspects. In spite of getting state-
of-the-art recoveries, we believe that there is large room for further improvements
by exploiting the structures of edges, as well as other image geometry, in a more
effective way.
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Figure 10. Comparison of NL-means based Rician noise removal
and our proposed method. First row: clean image ‘eagle’ of size
256 × 256, noisy image with Rician noise σ = 25.5 and PSNR =
19.79. Second row: NL-means based denoising with PSNR = 32.33,
our proposed method (8) with PSNR = 32.99.

Figure 11. Denoising phantom image of intensity range [10, 30]
with simulated ultrasound noise σ = 0.4. From left to right: noisy
image with SNR = 22.46, Bayesian based NL-means result with
SNR = 32.67 and our proposed with SNR = 33.22.



22 WEIHONG GUO AND JING QIN

Figure 12. Noisy observation and result obtained by SNL-means.

Acknowledgments. We would like to thank Drs. Arthur Heuer, Amir Avishai,
Nanthawan Avishai from Material science of Case Western Reserve Univeristy and
Dr. Grahame Kidd from Cleveland Clinic Foundation for providing the SEM data
and evaluation of the denoising results. Thanks also go to the referees who help
improve the presentation of this paper.

REFERENCES

[1] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and asso-
ciated variational problems, Comm. Pure Appl. Math., 42 (1989), 577–685.

[2] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629–639.

[3] L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithm,
Physica D: Nonlinear Phenomena, 60 (1992), 259–268.
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[14] C. Kervrann, J. Boulanger and P. Coupé, Bayesian Non-local Means Filter, Image Redun-

dancy and Adaptive Dictionaries for Noise Removal, Scale Space and Variational Methods
in Computer Vision, (2007), 520–532.

[15] B. Goossens, Q. Luong, A. Pizurica and W. Philips, An improved non-local denoising algo-
rithm, In “Local and Non-Local Approximation in Image Processing, International Workshop,
Proceedings”, (2008).

[16] G. Gilboa and S. Osher, Nonlocal Operators with Applications to Image Processing, Multiscale

Modeling and Simulation, 7 (2008), 1005–1028.



A GEOMETRY GUIDED IMAGE DENOISING SCHEME 23

[17] CA. Deledalle, L. Denis and F. Tupin, Iterative wieghted maximum likelihood denoising with
probabilistic patch-based weights, Transactions on Image Processing, 18 (2009), 2661–2672.

[18] D. Peter, V. Govindan and A. Mathew, Nonlocal-Means Image Denoising Techonology Using

Robust M-Estimator, Journal of Computer Science and Technology, 25 (2010), 623–631.
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