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Abstract— In this paper, we present a framework for neural
activity detection using fMRI data, based on both statistical
data analysis (data-driven) and graphical information modeling
(model-based). The data-driven approaches do rough prediction
when an extraordinary amount of neural activities arise. By
proper exploration of spatial, temporal, inter-subject correla-
tions, the model-based approaches can provide more insights
to details, and physiological meaning from high data volume,
low signal-to-noise ratio (SNR) fMRI measurements. Through
temporal cluster analysis (TCA), matched filtering, linear
predictive coding (LPC), and variational Bayesian Gaussian
mixture modeling (VBGMM), the temporal fMRI signals are
converted into event prototypes associated with three neural
statuses: activation, deactivation, and normality. As a result, the
high volume fMRI data generated from multiple subjects can
be statistically modeled as coupled finite-state sequences. Based
on the graphical-model representation, the neural activities
captured through fMRI can be classified and detected at
reduced computational cost. The whole framework consists
of three components: 1) image enhancement, event prediction
and capture; 2) event feature extraction and modeling; and
3) graphical model based Bayesian inference. The experiment
results demonstrate the advantages of the proposed hybrid,
compressive signal processing approach in terms of computa-
tional cost and robustness against inter-subject variability as
well as various artifacts.

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) is

currently one of the most widely used techniques for

neuroscience studies. Data mining techniques used in fMRI

studies can be characterized into two major schemes: model-

based and data-driven. Model-based methods, such as general

linear models (GLM) and graphical models, demand repeat-

able and stable patterns in brain activities. Those methods

can provide insights into how a particular cognitive process

is implemented in a specific brain area instead of merely

identifying where such a process is located [1]-[3]. However,

they cannot be used when the signal responses are not known

as a priori. Data-driven methods like temporal clustering

analysis (TCA), independent component analysis (ICA) and

principle component analysis (PCA), have more flexible

frameworks for data analysis in the absence of a priori
model of brain activities, but not fully exploiting the spatial,

temporal correlations between adjacent data.
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Fig. 1. System diagram of the proposed hybrid approach.

Despite having many achievements, the existing fMRI data

mining approaches have to address the following technical

challenges:

1) artifacts caused by random subject movements under

various experiment conditions;

2) insufficient utilization of temporal, spatial, and inter-

subject correlations among neural activities, typically

associated with data-driven approaches; and

3) increased computational complexity and cost, typically

associated with model-based approaches.

To tackle the above challenges, it requires innovation and

development of techniques for:

1) effective image registration and segmentation to reduce

artifacts and improve the SNR,

2) efficient representation of neural activity dynamics in

the fMRI signal space, and

3) effective statistical inference mechanisms.

In this paper, we present a hybrid approach to neural

activity detection from fMRI data, as shown in Fig. 1.

Under this framework, the data-driven approach predicts the

time windows in which events of interests will likely be

detected; the model-based approach compresses the high

volume data, and localize the information of interest effi-

ciently. Through a proper combination of two approaches,

the computational cost is reduced, and the efficiency and

robustness of the neural activity detection process are im-

proved. The whole procedure includes three stages: (1) fMRI

images are enhanced through registration and segmentation.

Neural activities are predicted by statistic data analysis,

and signal events are captured through matched filtering;

(2) signal events are represented by the linear predicative

codes (LPCs) and classified into event prototypes through
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an variational bayesian approach; (3) graphical models are

built from labeled event sequences, and are used to classify

and detect neural activities from newly acquired data.

The rest of the paper is organized as follows: Section

II reviews the related work; Section III describes the the

hybrid signal processing framework; Section IV presents

the experimental results; Section V concludes the paper and

outlines the future works.

II. RELATED WORK

Among data-driven approaches, ICA based methods are

robust against inter-subject variabilities at high computa-

tional cost, without fully utilizing the spatial and temporal

correlations among fMRI signals. PCA can reduce data

dimensionality under Gaussian assumption but is sensitive

to inter-subject variabilities [4]. TCA is computationally

efficient, but subject to motion artifacts caused by different

experimental conditions [5]. Among model-based studies,

GLM based methods statistically infer neural activities with

the prior knowledge derived from experiments yet has the

possibility to yield small false activation regions in low

SNR environments [6]. Gaussian smoothing filter can reduce

such false detections with biased estimation on activation

peak locations. An adaptive spatial filter has been developed

in [7] to capture spatial features of the neural activities

without utilizing inter-subject correlations and can not detect

the activation and deactivation at the same time. Spatial

modeling techniques like Markov random fields and hierar-

chical Bayesian models can improve the estimation accuracy,

assuming there exists the spatial continuity among fMRI

responses. The spatial modeling is primarily limited to the

spatially contiguous and locally homogeneous nature of

fMRI responses. Usually biased estimation and the sensi-

tivity to inter-subject variabilities are caused by insufficient

utilization of the spatial, temporal, inter-subject coherence

among fMRI data. In fact, spatial, temporal, inter-subject

correlations can be represented by discrete event prototypes

and logic sequences. By utilizing the prior knowledge gener-

ated by data-driven methods, discrete event based estimation

can yield superior performance [8].

TABLE I

COMPUTATIONAL COMPLEXITY

Case Computational Complexity

Non-Parametric Kernel-Based ICA O(K2N2)
ICA Using Kernel Entropy Est. O(KNLogN + K2N) [9]
TCA O(KNL)
Our Approach O(KML + KNM)

K:Subject number. N:Sample number.
L:Pixel number. M:LPC coefficient number.

This study investigates a hybrid approach: 1) use TCA as

an exploratory tool to reduce computation cost; 2) use better

image registration and segmentation methods to improve the

accuracy of TCA; 3) use signal compression techniques to

increase the SNR and the robustness against motion artifacts

and inter-subject variabilities; and 4) use discrete events
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Fig. 2. TCA signals. (a) TCA signals generated by one subject drinking
water. (b) Zoomed-in signals to illustrate the generation of time windows.

prototypes to increase the inference speed and accuracy. Ta-

ble I shows the computation complexity comparison among

different approaches.

III. METHODOLOGY

The whole framework consists of three components: 1)

image enhancement, event prediction and capture; 2) event

feature extraction and modeling; and 3) graphical model

based Bayesian inference.

A. Image Enhancement, Event Prediction and Detection

1) Image Registration and Segmentation: A 2D de-

formable image registration [10] and piecewise constant

model for level set version of mumford-shah segmentation

[11] are used to reduce the motion artifacts in fMRI data and

isolate the gray matter, where neural activities are present.

2) Event Prediction: As a data-driven technique, TCA

assumes that the number of pixels with extreme values will

be greater during the activation periods than during the rest

period. We use TCA to predict the time windows in which

extraordinary neural activities arise. When the TCA signals

are above a certain threshold, it can be regarded as a neural

activation (deactivation) period. Fig. 2 (a) shows the TCA

signals of one subject drinking water and Fig. 2 (b) shows the

zoomed-in signals to illustrate the procedure of time window

generation. Using the time windows generated by the data-

driven approach, event signals will be detected and modeled.

3) Event Detection: Fig. 3 shows the procedure of event

prototype generation. First the temporal sequence of the

segmented signal by time windows is normalized by sub-

tracting the mean of the signal. Then the sequenced signal

is convoluted with a matched filter (band-pass filter) to

reduce the SNR. A threshold manipulation is applied after

the convolution to remove the low-information background

activities. Then discrete events are isolated from the data

sequence. Finally, signal event data sets are categorized into

event prototypes for further logic processing.

B. Event Feature Extraction and Modeling

1) Feature extraction: When subjects perform similar

activities such as water drinking and glucose intaking, their
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Fig. 3. The procedure of event prototype generation.
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Fig. 4. Compressive linear predicative coding of signal events.

neural activities should exhibit similar patterns regardless

of their anatomical differences. However, due to the inter-

subject variabilities and artifacts caused by experiment con-

ditions, the signal patterns may not be exactly the same. For

example, some subjects drink water fast, their response sig-

nals could have a high-spike in a short period of time. When

subjects drink water slowly, the response data might be very

flat with little spike. In order to deal with such a disparity and

only get the pattern informaton, we utilize linear predictive

coding (LPC) which transmits spectral envelope information

with tolerance of transmission errors. Fig. 4 shows activities

performed by different subjects, resulted in transient event

signals which can be represented in LPC coefficients. It can

be seen that LPC can reserve the signals’ structural similarity

and disparity.

2) Events Classification: After the event prototypes were

generated. The event features could be classified using vari-

ational Bayesian Gaussian mixture model (VBGMM). Fig. 5

shows the event prototype clustering results. It can be seen

that the event features are successfully clustered into four

different clusters.

3) Graphical Model Based Inference: Probabilistic graph-

ical models are graphs in which nodes represent random

variables, and the arcs represent conditional independence

assumptions. Hence they provide a compact representation of
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Fig. 5. Clustering of event prototypes using the VBGMM approach.
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Fig. 6. Graphical model of neural activities in fMRI data.

joint probability distributions. With the classified compres-

sive transient events, our factor graph is showed in Fig. 6. Its

hidden states include (1) activation, (2) deactivation, and (3)

normality. Each hidden state has various emitted observations

of event prototype.

IV. EXPERIMENTAL RESULTS

We tested our methodology with 6 subjects of fMRI data

generated by water drinking activity. We used the data of five

subjects to train the graphical model using Bayesian Network

Toolbox, and used fMRI signals of the remaining subject

as testing data. Fig. 8 shows the neural activity detection

results in the area of hypothalamus using the proposed

hybrid approach. Fig. 8 (a) illustrates a set of average fMRI

signals in hypothalamus that is associated with the drinking

activities, (b) shows the generation of time windows using

TCA, (c) shows the event prototype sequences, and (d) gives

the neural activity detection results. We also estimated the

likelihood of each subject’s data fitting to event sequential

models, yielding little variance. Fig.10 shows the comparison

between TCA and the proposed method detecting neural

activity in the area of hypothalamus for 6 subjects. It can

be seen that TCA yields a false alarm for subject 4 and the

proposed approach shows robustness against the inter-subject

variabilities. Another advantage of the hybrid approach is

the reduced computational cost. As the fMRI data is of very

high volume, this approach is suitable to analyze the brain
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Fig. 7. Detection of neural activities. (a) fMRI temporal signals. (b) Time windows generated by temporal cluster analysis. (c) Labeled event sequence
(Red, Blue, Green, and Pink: cluster 1, 2, 3, and 4). (d) Detected neural activity status (Dark: activation; Gray: normality; White: deactivation).
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Fig. 8. Neural activity detection performance comparison between TCA (upper) and the proposed Hybrid approach (lower) in the area of hypothalamus.

activities in the long-time experiments such as detecting

neural activities in virtual reality.

V. CONCLUSION

We have described in this paper a new framework for

detecting neural activities in fMRI data. By integrating data-

driven and model-based approaches and using signal com-

pression techniques, the high data volume, low SNR fMRI

images can be converted to discrete event sequences. Based

on a graphical-model representation, the neural activities can

be detected and classified at reduced computation cost with

robustness against the inter-subject variability. Future work

will focus on finding better event prototype representations

and improvement of the event clustering robustness. Spatial

correlations among event sequences will be further studied

to extend the proposed framework’s capability of dealing

with applications associated with complex neural activities

(e.g. brain study in virtual reality). More effective structural

learning methods will be developed for better training of

graphical models.
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