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a b s t r a c t

Image inpainting, a technique of repairing damaged images, is an important topic in image
processing. In this paper, we solve the problem from an intensity function estimation
perspective. We assume the underlying image is defined on a continuous domain and
belongs to a space spanned by a basis of a reproducing kernel Hilbert space and some
variations of the Heaviside function. The reproducing kernel Hilbert space is used to model
the smooth component of the image while Heaviside function variations are used tomodel
the edges. The coefficients of the redundant basis are computed by the discrete intensity
at undamaged domain. We test the proposed model through various images. Numerical
experiments show the effectiveness of the proposed method, especially in recovering
edges.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Image inpainting is a technique of repairing corrupted/missing image intensity in a visually plausible way [1–6]. The
concept of digital image inpainting was first introduced in [7]. Image inpainting has gained a wide range of applications.
Examples include restoration of ancient frescoes [8], removing texts and scratches, correcting red eye effects in photos
and reducing artifacts [9]. Existing image inpainting methods can be classified into several categories: variational/partial
differential equation (PDE) based [7,10–12]; sparsity based [13,14]; texture synthesis based [15]; exemplar based [16,17]
and hybrid approaches [18,19]. Note that, thesemethods are not completely independent. For example, some sparsity based
methods may belong to the category of exemplar based methods.

Variational/PDE based approaches inpaint images by diffusing local image structure from known regions into unknown
inpainting regions. In [7], the authors smoothly propagated information from the surrounding areas in the direction of
isophote lines into unknown regions. Subsequently, many variational models have been applied to image inpainting. For
example, in [2], the authors proposed the curve driven diffusion (CDD) method and in [10], the authors introduced a
variational framework to restore images byminimizing total variation (TV). An Euler’s elastica energy basedmodel was then
discussed in [20] and this model can connect level lines over larger distances than TV based methods. In [11], the authors
proposed two models which combine TV and wavelet. In [21], a joint interpolation of the image gray-levels and isophote
directions was proposed for automatic inpainting in a variational framework. In [22], the authors used Cahn–Hilliard
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equation to inpaint binary images. The authors then generalized it for grayvalue images by using subgradients of TV
functionalwithin the flow and discussed the stationary state of the proposedmodel in [23]. The abovemethods need to solve
PDEs and are sometimes time consuming. An operator splitting method [24] was then proposed to speed up TV inpainting
algorithm. All these PDE based methods take advantage of the property that neighbored pixels are correlative and use local
information around the inpainting domain. These algorithms perform well for non-texture images with relatively smaller
missing regions.

Texture synthesis based methods are popular for images with textures. The idea is to synthesize new image pixels by
learning from similar regions in a texture sample [15,25]. In [15], the authors presented an algorithm to synthesize new
texture by taking patches of existing texture and stitching them together. However, they perform not that well when
handling natural images that have complex interactions between structure and texture boundaries.

For images containing both structures and textures, hybrid methods are sometimes used. In [18] for instance, texture
synthesis method and variational/PDE are combined. It decomposes an image into structure and texture parts and
reconstructs the structure part by using a PDE based algorithm and the texture part through a texture synthesis algorithm.
It is still hard to reconstruct large structure regions.

In order to reconstruct large missing/corrupted regions, some exemplar based methods are proposed. Exemplar based
inpainting methods combine texture synthesis method and isophote driven inpainting method. An exemplar-based
inpainting method by using a priority value which determines the fill order for each patch was introduced in [16]. This
technique can propagate both linear structure and texture into inpainting domain but has some difficulties in handling
curved structures. In [26], the authors proposed a novel method by using the sparsity at the patch level for modeling patch
priority and patch representation. Many other exemplar-based methods are introduced in [27–30].

Sparsity based inpainting methods assume the underlying image (or the patch) is sparse under a given transform, such
as discrete cosine transform, or wavelet. For instance, the authors used sparse representation over a redundant dictionary
technique to fill the hole patch-wisely in [14]. This kind of methods may introduce smooth effect when filling large missing
regions.

Some of abovemethods focus onmaintaining structure of the inpainting areas and some concern about texture synthesis.
In this paper, we focus on maintaining structure of images. Different from the above mentioned methods, the proposed
inpainting approach is based on a reproducing kernel Hilbert space (RKHS) and its extensions. RKHS has been used as
a powerful tool in machine learning, but not much in image processing [31–33]. So far, RKHS has only been explored in
denoising [34], colorization [35] and segmentation [36]. In [34], the authors proposed an adaptive kernel method to deal
with image denoising problems. They treat additive noise in a unified framework using RKHS. It can preserve sharp edges.
However, this method needs expensive computation. Inspired by the extensions of RKHS in machine learning, the authors
in [35] used a well-known least square regression in RKHS for colorization problems. So far, we have not found RKHS based
method for image inpainting. In this paper, we assume that the underlying image is defined on a continuous domain and
belongs to a space spanned by a basis of a RKHS and variations of Heaviside function. The coefficients of the redundant basis
are computed by the discrete intensity at undamaged domain. Our experiments show the effectiveness of the proposed
method.

This paper is organized as follows. In Section 2, we briefly review RKHS and its applications in one-dimension (1-D)
signal and two-dimension (2-D) image smoothing. In Section 3, we present a new model for image inpainting problem and
discuss the numerical algorithm. In Section 4, some experimental results are presented. Finally, we conclude this work in
Section 5.

2. Review on RKHS

We will use splines based RKHS to model the continuous component of images, so we review RKHS, 1D and 2D splines
as well as their applications in image smoothing.

2.1. Reproducing Kernel Hilbert space

Definition 1 (GramMatrix). Let χ be a set. Given a function κ : χ×χ → R and x1, . . . , xN ∈ χ , the matrix K = (Ki,j)
N with

elements Ki,j = κ(xi, xj), for i, j = 1, . . . ,N , is called the Gram matrix (or kernel matrix) of κ with respect to x1, . . . , xN .

Definition 2 (Positive Semidefinite Kernel). Let χ be a nonempty set. A function κ : χ × χ → R is called a positive
semidefinite kernel, if for all N ∈ N and all x1, . . . , xN ∈ χ , Gram matrix K is semidefinite.

Given a subset χ ⊂ R and a probability measure P on χ , we consider a Hilbert space with a family of real value functions
f : χ → R, with ∥f ∥L2(P) < ∞, and a corresponding inner product ⟨·, ·⟩H under which H is complete. The space H is a
reproducing kernel Hilbert space (RKHS), if there exists a kernel κ : χ × χ → R with the following two properties: (a) for
each x ∈ χ , κ(x, ·) belongs to the Hilbert space H , and (b) κ has the so called reproducing property, i.e. f (x) = ⟨f , κ(x, ·)⟩,
for all f ∈ H , in particular κ(x, y) = ⟨κ(x, ·), κ(y, ·)⟩H . Any such kernel function must be positive semidefinite.

Wahba proposed two splines based RKHS for smoothing problems in [37]. Our proposed model is partially motivated
from it. In what follows, we review 1-D and 2-D spline based RKHS [34,37,38].
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2.2. 1-D spline

For a real-valued function f on [0, 1]withm− 1 continuous derivatives and f (m) ∈ L2[0, 1], it can be expanded at t = 0
by Taylor series

f (t) =
m−1
v=0

tv

v!
f (v)(0)+

 1

0

(t − u)m−1+

(m− 1)!
f (m)(u)du = f0(t)+ f1(t), (2.1)

with f0(t) =
m−1

v=0
tv
v!
f (v)(0) and f1(t) =

 1
0
(t−u)m−1

+

(m−1)! f
(m)(u)du, where (x)+ = x for x ≥ 0 and (x)+ = 0 otherwise.

Let φv(t) = tv−1/(v − 1)! for v = 1, . . . ,m, H0 = span{φ1, . . . , φm}, then f0 ∈ H0 can be expanded by {φj}
m
j=1. H0 is a

Hilbert space with the square norm ∥φ∥2 =
m−1

v=0 [(D
vφ)(0)]2. From Chapter 1 in [37], we know that H0 is a reproducing

kernel Hilbert space (RKHS) with reproducing kernel (r.k.) R0(s, t) =
m

v=1 φv(s)φv(t).
Let Bm denote the class of functions satisfying the boundary conditions f (v)(0) = 0, for v = 0, 1, . . . ,m − 1,

H1 = {f : f ∈ Bm, f , f ′, . . . , f (m−1)absolutely continuous, f (m) ∈ L2}, then f1 ∈ H1. H1 is a Hilbert space with the
square norm ∥f ∥2 =

 1
0 (f

m(t))2dt . It has shown in [37], H1 is a RKHS with r.k. R1(s, t) =
 1
0 Gm(s, u)Gm(t, u)du, where

Gm(t, u) = (t − u)m−1+ /(m− 1)!. {ξi = R1(si, ·)}ni=1 forms a basis of H1 and f1 ∈ H1 can be expanded by it.
The author in [37] then constructs a Sobolev–Hilbert space HR : HR[0, 1] = {f : f , f ′, . . . , f (m−1) absolutely continuous,

f (m) ∈ L2}. For each function f ∈ HR, it has a unique decomposition

f = f0 + f1,

with f0 ∈ H0 and f1 ∈ H1. If we endow HR with the square norm ∥f ∥2 =
m−1

v=0 [(D
v f )(0)]2 +

 1
0 (D

mf )2(u)du, then H0 and
H1 will be perpendicular and r.k. for HR is R(s, t) = R0(s, t) + R1(s, t) =

m
v=1 φv(s)φv(t) +

 1
0 Gm(s, u)Gm(t, u)du. From

the above discussion, we can get that f (t) can be expressed as f (t) =
m

v=1 dvφv(t)+
n

i=1 ciξi(t).
The basic data model for smoothing problems can be expressed as:

−→g =
−→
f + ϵ, (2.2)

where
−→
f = (f (t1), . . . , f (tn))′, f (ti) is an intensity value of f at ti ∈ [0, 1], i = 1, 2, . . . , n,−→g is a noisy observation signal

and ϵ represents an additive noise. From [37], we get that the solution of (2.2) is
−→
f = Td+Σc , where T is a n×mmatrix

with T (i, j) = φj(ti),Σ is a n× n matrix withΣ(i, j) = {⟨ξi, ξj⟩}, ξi = R1(si, ·), d = (d1, d2, . . . , dm)′, c = (c1, c2, . . . , cn)′.
c , d are obtained by minimizing:

1
n
∥
−→g − Td−Σc∥2 + λc ′Σc, (2.3)

then c = M−11 (I − T (T ′M−11 T )−1T ′M−11 )
−→g , d = (T ′M−11 T )−1T ′M−11

−→g , where M1 = Σ + nλI and Σ is the same with the
above definition.

Once we get c , d from (2.3), we can estimate the signal function f (t) through

f (t) =
m
v=1

dvφv(t)+
n

i=1

ciξi(t)

for any t ∈ [0, 1]. Next, we will review 2-D thin-plate spline.

2.3. 2-D thin-plate spline

In this section, we present some basic theoretical foundations for the thin-plate spline and its application for smoothing
problems. Further details can be found in [39].

Let f be an intensity function defined on a continuous domain E2. Without loss of generality, we assume E2
= [0, 1]

× [0, 1]. Assume f ∈ K , a space of functions whose partial derivation of total order m being in L2(E2). Let
−→
f = (f (t1),

. . . , f (tn)) be discrete form of f on grids ti = (xi, yi) ∈ E2, then the noisy image of vector form can be described as:

−→g =
−→
f + ϵ,

where
−→
f is the original image and ϵ = (ϵ1, . . . , ϵn)′ represents an additive noise. Under two-dimensional condition, the

thin-plate penalty functional is defined as following

Jm(f ) =
m
v=0


∞

−∞


∞

−∞

Cvm


∂mf

∂xv∂ym−v

2

dxdy,
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where notation C means the combination formula,m is a parameter related to the degree of the polynomials. We can get an
optimal estimation of f for spline smoothing problem by minimizing the following variational problem

1
n
∥
−→g −

−→
f ∥2 + λJdm(f ), (2.4)

where d is the dimension of f . As we focus on 2-D images, then d = 2. From Chapter 2 in [37], we know that the null
space of the penalty Jdm is consisted of M = Cd

d+m−1 polynomials of degree no more than m − 1. In the experiments, we let
m = 2 (higher-order of m leads to similar results), then the null space of Jdm can be spanned by φ1(x, y) = 1, φ2(x, y) = x,
φ3(x, y) = y. Duchon [39] showed that, if t1, . . . , tn are such that least square regression on φ1, . . . , φM is unique, then (2.4)
has a unique minimizer f , with representation

f (t) =
M
v=1

dvφv(t)+
n

i=1

ciEm(t, ti), (2.5)

where t ∈ [0, 1] × [0, 1], Em is a Green’s function for the m-iterated Laplacian defined as: E(τ ) = θm,d|τ |
2m−d ln |τ |,

and θm,d = (−1)d/2+1+m

22m−1πd/2(m−1)!(m−d/2)!
(see [37,40] for more details). Let |t − ti| = (

d
j=1(xj − xj(i))2)1/2, Em(s, t) is given

by Em(s, t) = E(|s− t|). When s = t , we let Em(s, s) = 0. Model (2.4) can be rewritten as:

1
n
∥
−→g − Td− Kc∥2 + λc ′Kc, (2.6)

where K is the n × n matrix with the ijth entry K(i, j) = Em(ti, tj), T is the n × M matrix with T (i, j) = φj(ti). c , d can be
obtained by minimizing (2.6), then we get the solution of (2.4) through (2.5).

Once we get c and d from (2.6), we can estimate function f (s) on E2 through

f (s) =
M
v=1

dvφv(s)+
n

i=1

ciEm(s, ti), (2.7)

for any s ∈ E2.

3. The proposed method

Model (2.6) is for image smoothing. It is pretty straightforward to apply it to image inpainting. In what follows, we
will show that splines based RKHS itself is not enough to inpaint images with high quality. It leads to over smoothness and
sometimes blur results.We propose to combine thin-plate splines and variations of theHeaviside function to inpaint images.

Let f be an intensity function defined on a continuous domain E2
= [0, 1]× [0, 1] and

−→
f represent discrete form of f on

grids ti = (xi, yi) ∈ E2. We assume the size of
−→
f is n × q. For simplicity, we use

−→
f to interchangeably represent a matrix

and its vectorized version. The discrete formula of image inpainting problem can be formulated as

−→g i =

−→
f i + ϵi, i ∈ Λ,
−→v i, i ∈ Λc,

(3.1)

where −→g is the observed corrupted image,
−→
f is the original image, ϵ is i.i.d. additive Gaussian white noise, and Λ is the

index set of certain pixels of the image [41]. The index setΛc is called inpainting domain. Let the number of elements inΛ
be n1,Λ = {Λ1,Λ2, . . . ,Λn1}. Image inpainting is to restore

−→
f from the known data−→g . The ith pixel value of

−→
f is given

by
−→
f i = f (ti), where ti = (xi, yi), xi ∈ {1/n, 2/n, . . . , 1}, yi ∈ {1/q, 2/q, . . . , 1}.
A natural extension of (2.6) for inpainting is to minimize the following energy:

1
n1
∥
−→g |Λ − Td− Kc∥2 + λc ′Kc, (3.2)

whereK ∈ Rn1×n1 withK(i, j) = Em(tΛi , tΛj), T ∈ Rn1×M with T (i, j) = φj(tΛi). LetN = nq,K ∈ RN×n1 withK(i, j) = Em(ti, tj)

andT ∈ RN×M withT (i, j) = φj(ti), then the restored image
−→
f is given by

−→
f = Kc +Td = KM−11 (I − T (T ′M−11 T )−1T ′M−11 )

−→g |Λ +T (T ′M−11 T )−1T ′M−11
−→g |Λ, (3.3)

whereM1 = K + n1λI . We test model (3.2) on a simple synthetic image. In Fig. 3.3(a)–(c), we show the ground truth image,
the damaged image (the intensity at the middle rectangular region is missing) and the restored image through model (3.2)
respectively. From the inpainting result Fig. 3.3(c), we can see that edges are not recovered so well. The main reason is that
splines based RKHS is good at modeling smooth components of images but not edges.
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a

b

Fig. 3.1. (a) 1D Heaviside function; (b) Two approximated Heaviside functions with ξ = 0.7 (blue solid line) and ξ = 0.05 (black dash line), respectively.
Figures are better visualized in the color file that is available on the web version of this article.

In order to recover edges, we use variations of the Heaviside function to model edges with various directions at various
locations. We then combine splines based RKHS and these variations of Heaviside function to inpaint images. The Heaviside
(step) function is defined as

φ(x) =

0, x < 0,
1, x ≥ 0.

An approximation to the Heaviside function φ is ψ(x) = 1
2 +

1
π
arctan( x

ξ
) which approaches φ(x) when ξ → 0. In

Fig. 3.1, we show examples of ψ for two different ξ values. One can see that ξ controls the smoothness. To model one
dimensional jumps, small ξ value should be adopted. We choose ξ = 10−3 for numerical experiments. To model two
dimensional step edgeswith various angles and locations, we defineψki(x, y) = ψ(cos θkx+sin θky+ci), i = 1, . . . , n1 [34].
Theoretically, the more ψki the better, but it would increase computation time significantly. In our experiments, we let
θk ∈ {π/8, 2π/8, 3π/8, . . . , 15π/8} while ci ∈ {s/n1, 2s/n1, 3s/n1, . . . , 1} for an image with n1 known pixels, where s
controls the resolution. For instance, for an image with n1 known pixels and s = 4, ci ∈ {4/n1, 2 ∗ 4/n1, 3 ∗ 4/n1, . . . , 1}.
Some examples of ψki are shown in Fig. 3.2.

Under the assumption that the underlying image intensity function is the sum of smooth components and edges, the
underlying discrete image is given by

−→
f = Kc +Td+ Ψβ (3.4)

where K andT are defined similarly as in (3.3), Ψ ∈ RN×(16n1/s) with Ψ (i, j) = ψj(ti). For simplicity, let p = 16n1
s . Note

that the set {ψk} is pretty exhaustive and edges contained in an image are muchmore sparse, it is thus reasonable to expect
coefficients of {ψki}

p
ki=1

to be sparse. We achieve this by a ℓ1 regularity on β . Technically, ℓ0 norm should be used but it is
not convex. We use ℓ1 norm instead. The proposed nonlinear model is

min
c,d,β

 1
n1
∥
−→g |Λ − Td− Kc − Ψβ∥2 + λ1c ′Kc + µ∥β∥1


, (3.5)

where K(i, j) = Em(tΛi , tΛj), T (i, j) = φj(tΛi), Ψ (i, j) = ψj(tΛi). Similar to [42–44], we first transform (3.5) to a linear
constrained problem of the form

min
c,d,β,ω

 1
n1
∥
−→g |Λ − Td− Kc − Ψβ∥2 + λ1c ′Kc + µ∥ω∥1 : ω = β


. (3.6)

We apply ADMM [45] to solve the above problem. Let augmented Lagrangian function of (3.6) be denoted by

LA(c, d, β, ω, λ) =
1
n1
∥
−→g |Λ − Td− Kc − Ψβ∥2 + λ1c ′Kc + µ∥ω∥1 + α∥ω − β∥2 − λT (ω − β), (3.7)

where λ ∈ Rp, and α is a penalty parameter. The iterative scheme of (3.6) is given by
(c, d, β)k+1 = argmin

c,d,β
LA(c, d, β, ωk, λk),

ωk+1
= argmin

w
LA(ck+1, dk+1, βk+1, ω, λk),

λk+1 = λk − 2γα(ωk+1
− βk+1),

(3.8)
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Fig. 3.2. Left panel: surface images ofψ under ξ = 10−3 and nine parameter pairs (θ, c); right panel: the corresponding 2D intensity images. Some surface
images are slightly rotated for better visualization.

where γ is a relaxation parameter. The (c, d, β)-subproblem of (3.8) is equivalent to

min
c,d,β

Q (c, d, β) =


1
n1
∥
−→g |Λ − Td− Kc − Ψβ∥2 + λ1c ′Kc + α

ωk
− β −

λk

2α

2

. (3.9)

Let▽Q (c, d, β) = 0, we get that

K ′K K ′T K ′Ψ
T ′K T ′T T ′Ψ
Ψ ′K Ψ ′T Ψ ′Ψ

c
d
β


+

n1λ1Kc
0

αn1β


=


K ′−→g |Λ
T ′−→g |Λ

Ψ ′
−→g |Λ + αn1


ωk
−
λk

2α


 . (3.10)

This is equivalent to solving the following three equations together:

(K ′K + n1λ1K)c + K ′Td+ K ′Ψβ = K ′−→g |Λ, (3.11)

T ′Kc + T ′Td+ T ′Ψβ = T ′−→g |Λ, (3.12)

Ψ ′Kc + Ψ ′Td+ (Ψ ′Ψ + αn1I)β = Ψ ′
−→g |Λ + αn1


ωk
−
λk

2α


. (3.13)

From Eq. (3.13), we get that

β = (Ψ ′Ψ + αn1I)−1

Ψ ′
−→g |Λ + αn1


ωk
−
λk

2α


− Ψ ′Kc − Ψ ′Td


, (3.14)

then we substitute β in Eqs. (3.11) and (3.12) by (3.14), the solution of Eq. (3.10) is

c = (A1 − B1B−12 A2)
−1(c1 − B1B−12 c2),

d = B−12 (c2 − A2c),

β = (Ψ ′Ψ + αn1I)−1

Ψ ′
−→g |Λ + αn1


ωk
−
λk

2α


− Ψ ′Kc − Ψ ′Td


,
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where

A1 = (K ′K + n1λ1K)− K ′Ψ (Ψ ′Ψ + αn1I)−1Ψ ′K ,

A2 = T ′K − T ′Ψ (Ψ ′Ψ + αn1I)−1Ψ ′K ,

B1 = K ′T − K ′Ψ (Ψ ′Ψ + αn1I)−1Ψ ′T ,

B2 = K ′−→g |Λ − K ′Ψ (Ψ ′Ψ + αn1I)−1

Ψ ′
−→g |Λ + αn1


ωk
−
λk

2α


,

c1 = T ′T − T ′Ψ (Ψ ′Ψ + αn1I)−1Ψ ′T ,

c2 = T ′−→g |Λ − T ′Ψ (Ψ ′Ψ + αn1I)−1

Ψ ′
−→g |Λ + αn1


ωk
−
λk

2α


.

It is easy to see that the minimizer ωk+1 is given by:

ωk+1
= argmin

ω
µ∥ω∥1 + α

ω − βk+1
−
λk

2α

2 (3.15)

= max
βk+1

+
λk

2α

− µ

2α
, 0

sign


βk+1
+
λk

2α


(3.16)

where all operations are done component-wisely, and sign(·) represents the signum function.
The proposed algorithm is laid out below:

Algorithm 1.
Inputs: image−→g to be inpainted, model parameters µ, λ1, α > 0 and γ ∈ (0, (

√
5+ 1)/2).

Initialization: ω = ω0, λ = λ0 and set k = 0.
While ‘‘not converged’’, do
(1) compute ck+1, dk+1, and βk+1 through (3.10),
(2) compute ωk+1 through (3.15),
(3) update λk by λk+1 = λk − 2γα(ωk+1

− βk+1),
(4) k← k+ 1.
End Do
(5) compute

−→
f through (3.4).

Fig. 3.3(d) shows the restored image obtained by Algorithm 1. From the result, we can see that the proposed model can
keep edges better than model (3.2) as shown in Fig. 3.3(c).

The convergence of Algorithm 1 is giving by the following theorem, the proof of which can be found in [46].

Theorem 1. For any α > 0 and γ ∈ (0, (
√
5 + 1)/2), the sequence {(ck, dk, βk)} generated by Algorithm 1 from any starting

point (ω0, λ0) converges to a solution of (3.5).

It is very straightforward to extend the above algorithm to color images. We process three channels separately. The
details are omitted here.

4. Numerical results

In this section, we apply the proposed algorithm on various images and compare with some competitive approaches. For
quantitative comparison, we use mean squared error (MSE) and peak signal to noise ratio (PSNR):

MSE =
1
N
∥I − J∥2F ,

and

PSNR = 20 log10
MAXI
√
MSE

,

where I , J ,N andMAXf are the ground truth image, the recovered image, the number of pixels of the image, and themaximum
possible pixel value of the image, respectively. For color imageswith three channels, the definition of PSNR is the sameexcept
that

MSE =
1
3N
∥I − J∥2F .
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Fig. 3.3. (a) The ground truth image; (b) the observed image (random values are assigned for better visualization in the missing region); (c) the restored
image by model (3.2); (d) the restored image by the proposed Algorithm 1.

a b c d

e f g h

Fig. 4.1. The first row: ground truth images with size 64× 64, 64× 64, 64× 64, 128× 128. The second row: the observed images.

In all experiments, we let parameters α = 0.1, µ = 10−5, and γ = 1 for all testing images. λ1 is set to be 10−10 for images
with size 64 × 64 and 10−12 for images with size 128 × 128. We terminate Algorithm 1 when the relative error between
two consecutive iterates is smaller than a tolerance, i.e.

∥ωk+1
− ωk
∥2

∥ωk∥2
< tol.

We select tol = 10−3. The experiments are performed under MATLAB R2015b with Intel Xeon CPU E5504 at 2.00 GHz and
48.0 GB memory.

4.1. Test on gray images

Experiment 1: We test our algorithm on gray synthetic images with big gaps. The ground truth and observed images
are given in Fig. 4.1. We compare our method with three other approaches: TV-H−1 inpainting proposed in [23], a fast TV
algorithm proposed in [24] and deterministic annealing based image recovery method with hybrid sparse representation
proposed in [47]. For simplicity, we abbreviate the fast TV algorithm by FTV and deterministic annealing based method [47]
by DASR. The initial values are set to be the observed images in all experiments. We stop the iteration of TV-H−1 inpainting
and FTV when the iteration number reaches 2000 (as increasing the number of iteration gives similar performance while
consumes much more time). For a fair comparison among the competing methods, we have carefully tuned the parameters
in TV-H−1 inpainting, FTV and DASR for each image to give the best possible performance. In Fig. 4.2, we show the restored
results by the proposedmethod, TV-H−1 inpainting, FTV, and DASR. From Fig. 4.2(c), (d) and (o), (p), we can see that artificial
boundaries are introduced by FTV and DASR, while the restored results by our method look much natural. In Fig. 4.2(e), (f),
(h), the ‘‘bar’’ was connected by our method, TV-H−1 inpainting method and DASR method while the bar was broken in
Fig. 4.2(g) by FTV method. The proposed method and TV-H−1 inpainting give better performance than FTV and DASR in this
experiment. FTV is the fastest method among the comparedmethods. Though the computation time of ourmethod is longer
than FTV method, we give better results. The computation time of the proposed method is about one third of DASR method
for images with size 64× 64, and competitive with TV-H−1 inpainting method.
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Table 4.1
The ratio between the number of nonzero elements and the length of β for the four images in Fig. 4.1, where
n1 , n0 represent the length of β and the number of significant nonzero coefficients in β after thresholding.

Image 4.1(a) 4.1(b) 4.1(c) 4.1(d)

n1 12032 14096 13936 14368
n0 188 134 475 571
Ratio 1.56% 0.95% 9.54% 3.97%

(a) PSNR = 20.58 dB. (b) PSNR = 16.46 dB. (c) PSNR = 15.23 dB. (d) PSNR = 13.87 dB.

(e) PSNR = 17.42 dB. (f) PSNR = 21.40 dB. (g) PSNR = 10.87 dB. (h) PSNR = 14.86 dB.

(i) PSNR = 20.60 dB. (j) PSNR = 19.64 dB. (k) PSNR = 14.92 dB. (l) PSNR = 19.43 dB.

(m) PSNR = 30.24 dB. (n) PSNR = 30.41 dB. (o) PSNR = 27.01 dB. (p) PSNR = 22.05 dB.

Fig. 4.2. In each row, from left to right: the inpainting results by the proposed method, TV-H−1 , FTV, and DASR.

To verify the assumption that the coefficients of {ψki}
p
ki=1

are sparse, in other words, many coefficients in β are close to
zero, Table 4.1 lists the ratio between the number of nonzero coefficients in β after thresholding and the length of β for the
four images in Fig. 4.1. In this table, we set the coefficients smaller than 10−6 to zero. From Table 4.1, it can be seen that the
coefficient β is sparse.
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Table 4.2
PSNRs around λ1 = 10−10 , µ = 10−5 , and α = 0.1 for image 4.1(b).

(λ1, µ) α

0.05 0.1 0.2

(5× 10−11, 10−5) 18.30 17.65 17.31
(1× 10−10, 10−5) 17.88 17.42 17.33
(5× 10−10, 10−5) 13.58 17.15 18.56
(10−10, 5× 10−6) 18.17 17.94 17.54
(10−10, 5× 10−5) 23.58 20.47 18.63

a b c

Fig. 4.3. Original test images.

(a) 30% corrupted lena. (b) PSNR = 31.78 dB. (c) PSNR = 31.81 dB. (d) PSNR = 31.27 dB.

(e) 50% corrupted lena. (f) PSNR = 28.04 dB. (g) PSNR = 27.72 dB. (h) PSNR = 27.38 dB.

Fig. 4.4. (a) The lena image corrupted by 30% random noise; the restored images from (a) using the proposed method (b), FRAMC (c) and FTV (d); (e) The
lena image corrupted by 50% random noise; the restored images from (e) using the proposed method (f), FRAMC (g) and FTV (h).

Note that there are four parameter λ1,µ, α and γ in Algorithm 1, we just setµ = 10−5, α = 0.1 and γ = 1 for all testing
images. For any γ ∈ (0, 1+

√
5

2 ), the proposed algorithm is convergence. We can simply let γ = 1 for all experiments. We
list the PSNRs around λ1 = 10−10, µ = 10−5 and α = 0.1 for Fig. 4.1(b) in Table 4.2 as an example. It can be seen that the
selected parameters cannot promise the best result for test image 4.1(b), but the result is already good enough.

Experiment 2: In Fig. 4.4, an 128×128 image corrupted by 30% and 50% randomnoise is tested by the proposed algorithm.
The original image is shown in Fig. 4.3(a). We compared our method with the frame based method [48] and FTV. To make a
fair comparison, we have tried our best to tune the parameters of the compared methods for the purpose of achieving the
best possible performance [49]. In this paper, we abbreviate the method proposed in [48] by FRAMC. The restored results
are given in Fig. 4.4. We get higher PSNR than FTV and the results are comparable to FRAMC.

Experiment 3: To test the robustness of the proposed algorithm, we apply it on more noisy images. Some 128 × 128
images corrupted by some scratches or texts are tested in this experiment. The original images are shown in Fig. 4.3(b)–(c).
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(a) The observed image. (b) PSNR = 37.52 dB. (c) PSNR = 35.65 dB. (d) PSNR = 31.57 dB.

Fig. 4.5. (a) The observed MRI image; the restored images by the proposed method (b), FRAMC (c) and FTV (d).

Fig. 4.6. Observed images.

(a) PSNR = 31.17 dB. (b) PSNR = 32.20 dB. (c) PSNR = 30.17 dB. (d) PSNR = 29.86 dB.

(e) PSNR = 33.88 dB. (f) PSNR = 33.79 dB. (g) PSNR = 33.42 dB. (h) PSNR = 32.25 dB.

Fig. 4.7. In each row, from left to right: the inpainting results by the proposed method, DASR, FRAMC and FTV.

In Fig. 4.5, the proposed method leads to the highest PSNR. Fig. 4.6 shows testing images corrupted by texts. The restored
results are shown in Fig. 4.7. DASR and the proposed method lead to comparable results which are better than those of FTV
and FRAMC. DASR is however slower than the proposed method. FTV and FRAMC lead to lower PSNR but are faster. Note
that, we have a lot of room to speed up our non-optimized Matlab code. In Fig. 4.8, the image is corrupted by 2% Gaussian
white noise and some scratches. The restored result by the proposed method is given in Fig. 4.8(b). From the above results,
we can see that the performance of the proposed method is quite good.

4.2. Test on color images

Experiment 4: We also test our algorithm on color images inpainting in Figs. 4.9–4.11. In Fig. 4.9, we compare our
algorithm with FTV. We still see scratches in Fig. 4.9(d) while the visual effect of 4.9(c) is more acceptable. We compare
our method with FRAMC and FTV in Figs. 4.10 and 4.11. The proposed approach leads to the highest PSNR.
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a b

Fig. 4.8. The observed image (left) and the restored image (PSNR = 32.54 dB) by the proposed method.

(a) The ground truth. (b) The observed image. (c) PSNR = 28.77 dB. (d) PSNR = 23.23 dB.

Fig. 4.9. (a) The ground truth image; (b) the observed image; the restored images by the proposed method (c) and FTV (d). Figures are better visualized in
the color file that is available on the web version of this article.

(a) The observed image. (b) PSNR = 35.78 dB. (c) PSNR = 34.91 dB. (d) PSNR = 33.59 dB.

Fig. 4.10. The observed image (a) and restored images by the proposed method (b), FRAMC (c) and FTV (d). Figures are better visualized in the color file
that is available on the web version of this article.

(a) The observed image. (b) PSNR = 32.24 dB. (c) PSNR = 32.06 dB. (d) PSNR = 31.58 dB.

Fig. 4.11. The observed image (a) and restored images by the proposed method (b), FRAMC (c) and FTV (d). Figures are better visualized in the color file
that is available on the web version of this article.

5. Conclusion

Wehaveproposed anovel inpaintingmethodbased on intensity function estimation.We assume the underlying intensity
function is defined on a continuous domain and belongs to a space spanned by a basis of a reproducing Kernel Hilbert space
and some variations of Heaviside function. The proposed minimization problem is solved using ADMM. The parameters are
easy to select. We use the same parameters for testing images with the same size. Many numerical experiments show that
the proposed method is better or at least comparable with some competitive methods. It has potential in inpainting big
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gaps. As a future work, we will inpaint bigger gaps using divide and conquer idea. We can start the inpainting from the
boundary of the inpainting domain and gradually move inward. We expect even better performance this way. Compared
to variational/PDE based methods which always need to assume boundary conditions, the new proposed method does not
have these problems. The proposed model can also be applied to image denoising and super-resolution.
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