October 28, 2025 National Chocolate Day

Today in History:

Gateway Arch Completed (1965)

Statue of Liberty dedicated (1886)

Number of the Day: 744

 $744 = 2 \times 2 \times 2 \times 3 \times 31$

744 is the number of perfect squared rectangles of order 14

Fun Fact:

It is Texas law that when two train meet at a railroad crossing, each shall come to a full stop, and neither shall proceed until the other has gone.

Quote of the Day:

"If I were giving a young man advice as to how he might succeed in life, I would say to him, pick out a good father and mother, and begin life in Ohio."

- Wilbur Wright

Today's Weather:

Sunshine. High 58°

Math 121 - Quiz #30

Find

$$\lim_{x \to 0} \frac{e^{3x} - 3x - 1}{x^2} = \frac{\circ}{\circ}$$

$$\lim_{x\to 0} \frac{3e^{3x}-3}{2x} = \frac{0}{0}$$

$$\lim_{x \to 0} \frac{qe^{3x}}{2} = \frac{q}{2}$$

mp00 30 **₹15**

$$= \lim_{x \to \infty} \frac{\sin(\pm)}{\pm} = \frac{0}{0}$$

$$= \lim_{x \to \infty} \frac{\sin(x)}{\frac{1}{x}} = \frac{0}{0}$$

$$= \lim_{x \to \infty} \frac{\cos(x)(\frac{1}{x})}{\frac{1}{x^2}} = 1$$

$$ln y = ln ln (1 - \frac{3}{x})^{x}$$

$$= \sum_{i=1}^{\infty} \left(1 - \frac{x}{3}\right)_{x}$$

$$= \lim_{x \to \infty} x \Omega_n \left(1 - \frac{3}{x}\right) = \frac{5}{20} \cdot 0^3$$

$$= \frac{2n\left(1-\frac{3}{2}\right)}{2} = \frac{00}{0}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{1-\frac{3}{x}} \cdot \left(\frac{3}{x^2}\right)}{\left(\frac{-1}{x^2}\right)} = -3$$

GRAPH ING

- 1. Domain
 2. Range
 3. x-intercepts
 4. y-intercepts
 5. increasing
 6. Deceasing
 7. Critical Points
 8. Concave up
 9. Concave down
 10 Inflections Point
 - - 0. Inflections Points

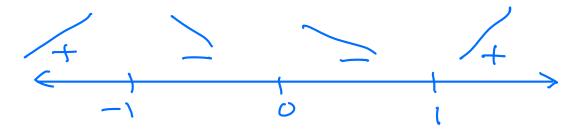
EXAMPLE
$$f(x) = 3x^5 - 5x^3$$

- 1) DOMAIN ALL X
 2) RANGE (SAVE FOR LATER) ALL Y

 3) X-INT (Y=0)

$$=$$
 (3) \times - INT $(y=0)$

$$0 = 3x^5 - 5x^3$$


$$0 = x^3(3x^2 - 5)$$

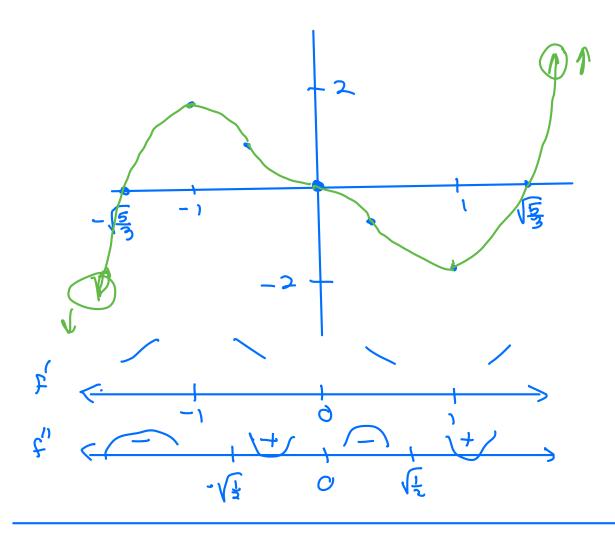
$$\chi = 0 \qquad 3\chi^2 - 5 = 0$$

$$\chi = \pm \sqrt{\frac{5}{3}}$$

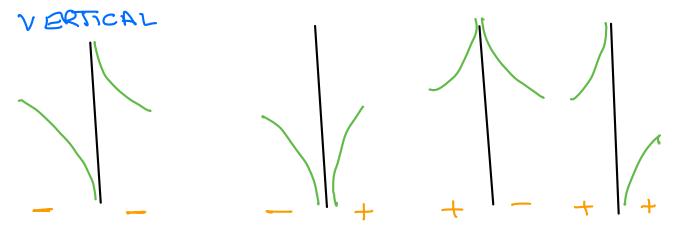
$$f'(x) = 15x^4 - 15x^2$$

$$= 15x^{2}(x^{2}-1) = 0$$

$$x = -1$$
 max $x = 1$ min


$$f'(x) = 15x^4 - 15x^2$$

$$f'(x) = 60x^3 - 30x$$


$$\chi = 0 \qquad 2x^2 - 1 = 0$$

$$\chi = \pm \sqrt{\frac{1}{2}}$$

CON DN
$$(-\sqrt{12}, 0) \cup (\sqrt{12}, \infty)$$

 $(-\sqrt{12}, 0) \cup (\sqrt{12}, \infty)$
 $(-\sqrt{12}, 0) \cup (\sqrt{12}, \infty)$
 $(-\sqrt{12}, 0) \cup (\sqrt{12}, \infty)$
 $(-\sqrt{12}, 0) \cup (\sqrt{12}, \infty)$

ASYMPTOTES

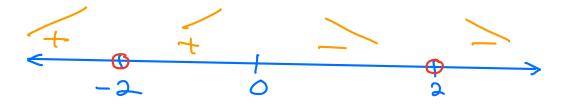
$$FIND V. A. f(x) = \frac{Q(x)}{Q(x)}$$

EXAMPLE
$$f(x) = \frac{\chi^2 + 1}{\chi^2 - 4}$$

① DOMAIN:
$$X \neq \pm 2$$

② RANGE: LATER $(-\infty, -\frac{1}{4}] \cup (1, \infty)$
③ $X-INT$: $Y=0$ $O=\frac{x^2+1}{x^2-4}$

$$\chi^2 + 1 = 0$$
 No!!


$$f'(x) = \frac{-10x}{(x^2-4)^2}$$

$$\frac{-10^{2}}{(x^{2}-4)^{2}} = 0$$

$$-10^{2} = 0$$

$$2 = 0$$

$$(x^2-4)^2 = 0$$

 $x = \pm 2$

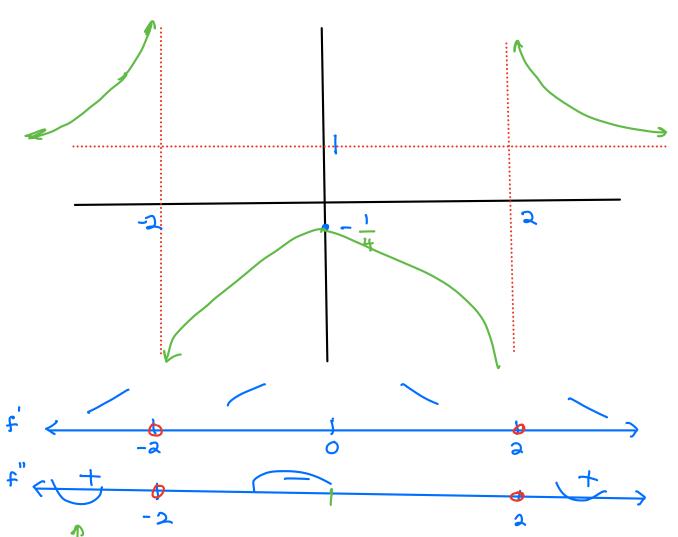
$$xam 0 = x$$

$$f''(x) = \frac{30x^2 + 40}{(x^2 - 4)^3}$$

$$\frac{30x^2 + 40}{(x^2 - 4)^3} = 0$$

$$30x^2 + 40 = 0$$

$$NO[]$$


$$(\chi^2 - \mu)^3 = 0$$

$$\chi = \pm 2$$

CON UP
$$(-\infty, -2) \cup (a, \infty)$$

CON ON $(-a, 2)$
I.P. NONE

$$\lim_{\chi \to too} \frac{\chi^2 + 1}{\chi^2 + 1} = 1$$

