Math 122 - #10 Arc Length

Find the length of the curve:

1.
$$f(x) = \frac{2}{3}(x-7)^{3/2}$$
 on [7, 14]

2.
$$f(x) = \frac{2}{3}(x-6)^{3/2}$$
 on $[6, 12]$

3.
$$y = \frac{x^3}{6} + \frac{1}{2x}$$
 on $[1/2, 2]$

4.
$$y = \frac{2}{3}x^{3/2} + 1$$
 on $[0, 1]$

5.
$$y = \frac{x^4}{8} + \frac{1}{4x^2}$$
 on $[1, 2]$

6. Find the surface area if $y = \sqrt{9 - x^2}$ for $-2 \le x \le 2$ is rotated about the x-axis.

7. Find the surface area if $y = x^3$ for $1 \le x \le 2$ is rotated about the x-axis.

8. Find the surface area if $y = \sqrt{x}$ for $1 \le x \le 4$ is rotated about the x-axis.

Answers

1.
$$\frac{2}{3} \left(16\sqrt{2} - 1 \right)$$

2.
$$\frac{2}{3} \left(7\sqrt{7} - 1 \right)$$

3.
$$\frac{33}{16}$$

4.
$$\frac{2}{3}(2\sqrt{2}-1)$$

5.
$$\frac{33}{16}$$

6.
$$24\pi$$

7.
$$\frac{\pi}{27}(145^{3/2}-10^{3/2})$$

8.
$$\frac{\pi}{6}(17^{3/2}-5^{3/2})$$