Math 122-\#10
 Arc Length

Find the length of the curve:

1. $f(x)=\frac{2}{3}(x-7)^{3 / 2}$ on $[7,14]$
2. $f(x)=\frac{2}{3}(x-6)^{3 / 2}$ on $[6,12]$
3. $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ on $[1 / 2,2]$
4. $y=\frac{2}{3} x^{3 / 2}+1$ on $[0,1]$
5. $y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}}$ on $[1,2]$
6. Find the surface area if $y=\sqrt{9-x^{2}}$ for $-2 \leq x \leq 2$ is rotated about the x-axis.
7. Find the surface area if $y=x^{3}$ for $1 \leq x \leq 2$ is rotated about the x-axis.
8. Find the surface area if $y=\sqrt{x}$ for $1 \leq x \leq 4$ is rotated about the x-axis.

Answers

1. $\frac{2}{3}(16 \sqrt{2}-1)$
2. $\frac{2}{3}(7 \sqrt{7}-1)$
3. $\frac{33}{16}$
4. $\frac{2}{3}(2 \sqrt{2}-1)$
5. $\frac{33}{16}$
6. 24π
7. $\frac{\pi}{27}\left(145^{3 / 2}-10^{3 / 2}\right)$
8. $\frac{\pi}{6}\left(17^{3 / 2}-5^{3 / 2}\right)$
