

Find the n-th order Taylor Polynomial for:

1.
$$f(x) = e^x$$
 centered at $a = 0$, $n = 4$

2.
$$f(x) = \sin x$$
 centered at $a = \pi$, $n = 5$

3.
$$f(x) = \cos 2x$$
 centered at $a = 0$, $n = 3$

4.
$$f(x) = \sqrt{x}$$
 centered at $a = 1$, $n = 4$

5.
$$f(x) = \ln x$$
 centered at $a = 1$, $n = 5$

6.
$$f(x) = e^{3x}$$
 centered at $a = 1, n = 3$

7.
$$f(x) = \arctan x$$
 centered at $a = 0, n = 3$

8.
$$f(x) = \ln(x^2 + 4)$$
 centered at $a = 0$, $n = 2$

9.
$$f(x) = \ln(1-x)$$
 centered at $a = 0, n = 3$

Answers

1.
$$T_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!}$$

2.
$$T_5(x) = -(x-\pi) + \frac{1}{6}(x-\pi)^3 - \frac{1}{120}(x-\pi)^5$$

3.
$$T_3(x) = 1 - 2x^2$$

4.
$$T_4(x) = 1 + \frac{(x-1)}{2} - \frac{(x-1)^2}{8} + \frac{(x-1)^3}{16} - \frac{5(x-1)^4}{128}$$

5.
$$T_5(x) = (x-1) - \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-1)^3 - \frac{1}{4}(x-1)^4 + \frac{1}{5}(x-1)^5$$

6.
$$T_3(x) = e^3 + 3e^3(x-1) + \frac{9e^3}{2}(x-1)^2 + \frac{9e^3}{2}(x-1)^3$$

7.
$$T_3(x) = x - \frac{x^3}{3}$$

8.
$$T_2(x) = \ln 4 + \frac{x^2}{4}$$

9.
$$T_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}$$