CI	\mathbf{M}_{i}	Math 122 Test 1	DE	
SI:	C	1 10 000	EF:	
	Se	ptember 16, 2025		,

Name_____

1	
2	
3	
4	
5	
Total	

Directions:

- 1. No books, notes or gas station sushi. You may use a calculator to do routine arithmetic computations. You may *not* use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work, and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.

(a) Compute
$$\int \frac{x}{\sqrt{x^2+1}} dx$$

(b) Compute $\int x^{3/2} \ln x \ dx$

- 2. (20 points)
 - (a) Compute $\int \sin^4(4x) \cos^3(4x) dx$

(b) Compute $\int e^x \tan^2(e^x) \sec^4(e^x) dx$

(a) Compute
$$\int \frac{1}{x^2 \sqrt{1 - 9x^2}} dx$$

(b) Compute $\int \operatorname{arcsinh}(2x) dx$

(a) (10 points)
$$\int \frac{5x+3}{(x-1)(x+2)(x+3)} dx$$

(b) (10 points)
$$\int \frac{\sin x}{\cos^2 x + \cos x - 2} \, dx$$

(a) Compute
$$\int_{1}^{\infty} \frac{4 \arctan x}{(x^2 + 1)} dx$$

(b) Use the chart below and Simpson's method with n=4 sub-intervals to approximate the integral

$$\int\limits_0^4 \frac{1}{x^2 + 1} \ dx$$

x	f(x)	M.F.	Р

FORMULA PAGE

$$\sin^2\theta + \cos^2\theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$1 + \cot^2\theta = \csc^2\theta$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\sin 2x = 2\sin x \cos x$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \sec^2 x$$

$$(\sec x)' = \sec x \tan x$$

$$(\csc x)' = -\csc x \cot x$$

$$(\cot x)' = -\csc^2 x$$

$$(e^x)' = e^x$$

$$(\ln x)' = \frac{1}{x}$$

$$(\arctan x)' = \frac{1}{x}$$

$$(\arctan x)' = \frac{1}{x}$$

$$(\arctan x)' = \frac{1}{|x|\sqrt{x^2 - 1}}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh^2 x - \sinh^2 x = 1$$

$$(\sinh x)' = \cosh x$$

$$(\cosh x)' = \sinh x$$

$$(\operatorname{arcsinh} x)' = \frac{1}{\sqrt{x^2 + 1}}$$

$$(\operatorname{arccosh} x)' = \frac{1}{\sqrt{x^2 - 1}}$$

$$(\operatorname{arctanh} x)' = \frac{1}{1 - x^2}$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(c) = \frac{1}{b - a} \int_a^b f(x) dx$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$\int \sec^3 x \, dx = \frac{1}{2} [\sec x \tan x + \ln|\sec x + \tan x|] + C$$

$$\int \csc x \, dx = \ln|\csc x - \cot x| + C$$

$$1 + 1 = 2$$