Math 121 Test 1

EF:	

September 20, 2016

1	
2	
3	
4	
5	
6	
7	
Total	

Name			

Directions:

- 1. No books, notes or Galaxy Note7s. You may use a calculator to do routine arithmetic computations. You may *not* use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 7 problems.

1. (20 Points)

(a) Write |3x - 4| < 2 in the form a < x < b.

(b) Find the equation of the line through (1,-2) and (2,4)

(c) Find the domain of $f(x) = \frac{x + x^{-1}}{(x - 3)(x + 4)}$

(d) If $0 \le \theta \le \pi/2$, find $\sin \theta, \cos \theta$ and $\sec \theta$ if $\cot \theta = 4$

2. (15 points)

(a) Find
$$f^{-1}(x)$$
 for $f(x) = \frac{1}{2x+1}$

(b) Solve for
$$x$$
: $2^{3x+1} = 32$

(c) Solve for
$$x$$
: $2 \ln x - \ln(x+4) = \ln 2$

3. (10 points) Below is the graph of f(x).

Find:

- (a) $\lim_{x \to 1} f(x)$
- (b) $\lim_{x\to 2} f(x)$
- (c) f(2)
- (d) $\lim_{x \to 3} f(x)$
- (e) $\lim_{x \to 4^-} f(x)$
- (f) $\lim_{x \to 4^+} f(x)$
- (g) $\lim_{x \to 4} f(x)$
- (h) f(4)
- (i) $\lim_{x \to 5} f(x)$

4. (20 points)

(a)
$$\lim_{x \to 1} \frac{5 - x^2}{4x + 7}$$

(b)
$$\lim_{x \to 0} \frac{e^{3x} - e^x}{e^x - 1}$$

(c)
$$\lim_{a \to b} \frac{a^2 - 3ab + 2b^2}{a - b}$$

(d)
$$\lim_{s \to 0} \frac{1 - \sqrt{s^2 + 1}}{s^2}$$

5. (15 points)

(a) Find the value of a and b so that f(x) is continuous if

$$f(x) = \begin{cases} ax+b & x < 1\\ 4 & x = 1\\ 2ax-b & x > 1 \end{cases}$$

(b)
$$\lim_{x \to 0} \frac{1 - \cos 3x}{3x^2}$$

(c)
$$\lim_{x \to -\infty} \frac{4x^2 - 3}{\sqrt{25x^4 + 4x + 200}}$$

6. (10 points) Show that $\sqrt{x} + \sqrt{x+2} = 3$ has a solution.

7. (10 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.

a) If
$$\lim_{x\to 3} f(x) = L$$
, then $L = f(3)$. T

b) If
$$\lim_{x\to 0} \frac{f(x)}{x} = 1$$
, then $f(0) = 0$ **T F**

c) If
$$\lim_{x \to -7} f(x) = 8$$
 then $\lim_{x \to -7} \frac{8}{f(x)} = 1$ **T F**

d)
$$\lim_{\substack{x\to 5^+\\ \lim_{x\to 5}f(x)=3}} f(x) = 4 \text{ and } \lim_{x\to 5^-} f(x) = 2 \text{ then}$$
 T

e) If
$$\lim_{x\to 2} f(x) = 2$$
 then $\lim_{x\to 4} f(x) = 4$ T F