Math 121 Test 1

EF:	

September 18, 2018

1	
2	
3	
4	
5	
6	
Total	

Name	KEY	

Directions:

- 1. No books, notes or missing two field goals and two extra points. You may use a calculator to do routine arithmetic computations. You may not use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 6 problems.

1. (20 Points)

(a) Write the inequality |3x - 4| < 2 in the form a < x < b.

$$-2 < 3 \times -4 < 2$$

 $2 < 3 \times < 6$
 $\frac{2}{3} < \times < 2$

(b) Suppose $|x-4| \le 1$, what is the largest vale of |x+4|?

(c) Find the equation of the line perpendicular to x + 5y = 3 that goes through (3, 2).

$$5Y = -X + 3$$
 $Y = -\frac{1}{5}X + \frac{3}{5}$ $M = -\frac{1}{5}$
 $M_{\perp} = 5$ $Y - \lambda = 5(\lambda - 3)$
 $Y = 5x - 13$

(d) Find $(f \circ g)(x)$ for $f(x) = \cos x$ and $g(x) = x^3 + x^2$

$$f(g(x)) = f(x^3 + x^2)$$

$$= \left[\cos(x^3 + x^2)\right]$$

- 2. (20 points)
 - (a) Find $\tan \theta$ if $\sec \theta = \sqrt{5}$ and $\sin \theta < 0$

(b) Find the exact value of tan(arcsin(0.8))

$$\Theta = ARCSIN(.8)$$

$$SIN \Theta = .8$$

$$TAN \Theta = \frac{8}{6} = \frac{4}{3}$$

(c) Solve for x: $2^{9x+2} = 16^{5x-2}$

$$0x+2 = 2^{4(5x-2)}$$

$$0x+2 = 20x - 8$$

$$11x = 10 \quad x = \frac{10}{11}$$

(d) Solve for x: $\log_3(x^2 - 6x) = 3$

$$x^{2}-6x = 27$$

 $x^{2}-6x-27 = 0$
 $(x+3)(x-9) = 0$
 $x=-3,9$

(a)
$$\lim_{x \to 0} \frac{(x+a)^2 - a^2}{x}$$

$$= \lim_{x \to 0} \frac{x^2 + 2xa + x^2 - x^2}{x}$$

$$= \lim_{x\to\infty} x + 2\alpha = [2\alpha]$$

(b)
$$\lim_{x \to 5} \frac{x-5}{\sqrt{x+4}-3}$$
 $\left(\frac{\sqrt{x+4}+3}{\sqrt{x+4}+3}\right)$

$$= \lim_{X \to 5} \frac{(\sqrt{x+4} + 3)}{x+4} = \boxed{6}$$

(c)
$$\lim_{x \to 3^{-}} \frac{x^{2} - x - 6}{|x^{2} - 9|} = 0$$
 $(x - 3)(x + 2)$ $(x - 3)(x + 3)$

$$= - \lim_{x \to 3^{-}} \frac{x+2}{x+3} = \boxed{\frac{5}{6}}$$

(d)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2 - 1} \right)$$

$$= \lim_{x \to 1} \frac{x+1-2}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x}{(x-1)(x+1)} = \boxed{\frac{1}{2}}$$

4. (20 points)

(a) If
$$f(x) = \frac{2x}{x-4}$$
, find $f^{-1}(x)$ $y = \frac{2x}{x-4}$
 $x = \frac{2y}{y-4}$ $xy - 4x = 2y$ $xy - 2y = 4x$
 $y = \frac{4x}{x-2}$ $\left[f'(x) = \frac{4x}{x-2} \right]$

(b)
$$\lim_{x \to 0} \frac{3x + 4\sin 3x}{\sin 5x - x\cos 2x}$$

$$= \lim_{x \to 0} \frac{3 + \frac{451N3x(3)}{3x}}{\frac{551N5x}{52} - \cos 2x} = \frac{3 + 12}{5 - 1} = \boxed{\frac{15}{4}}$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{3x^2 + 2x + 6}}{5 - 3x} = \boxed{3}$$

(d) Find the value of a so that f(x) is continuous if

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{for } x < 2\\ 3ax - 8 & \text{for } x \ge 2 \end{cases}$$

$$\lim_{x\to 2^{-}} \frac{x^2-4}{x-2} = \lim_{x\to 2^{-}} \frac{(x-2)(x+2)}{(x-2)} = 4$$

$$0m$$
 $3ax-8 = 6a-8$ $6a-8=4$ $\sqrt{a=2}$

5. (10 points) Below is the graph of f(x).

Find:

(a)
$$\lim_{x\to 2^{-}} f(x) = 5$$

(b)
$$\lim_{x\to 2^+} f(x) = 4$$

(c)
$$\lim_{x\to 2} f(x) = \mathbf{DNE}$$

(d)
$$f(2) = 5$$

(e)
$$\lim_{x \to 3^{-}} f(x) = 2$$

(f)
$$\lim_{x \to 3^+} f(x) = 2$$

(g)
$$\lim_{x\to 3} f(x) = 2$$

(h)
$$f(3) = 3$$

(i) Which discontinuity is removable?
$$\chi = 3$$

- 6. (10 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.
 - a) If f(x) is continuous at x = c then |f(x)| is continuous at x = c.

b) If
$$\lim_{\substack{x\to c\\0<|x-c|<\delta$}} f(x)=L$$
, then there is a δ such that if

$$T$$
 F

c) If
$$\lim_{x\to c} \frac{f(x)}{g(x)} = L$$
 then $\lim_{x\to c} g(x) \neq 0$

$$\Gamma$$
 \overline{F}

d) If
$$f(x)$$
 is a polynomial and $f(1) = -2$ and $f(4) = 5$, then $f(x) < 6$ for all $1 \le x \le 4$

e) If
$$f(x)$$
 is a polynomial and $f(1) = -2$ and $f(4) = 5$, then there is a c with $1 < c < 4$ where $f(c) = 0$

$$\overline{\mathrm{T}}$$