Math 121 Test 1 - Review 1

Find the domain for:

1.
$$f(x) = \frac{5x - 7}{7x + 10}$$

2.
$$f(x) = \sqrt{\frac{x+9}{x-1}}$$

3.
$$f(x) = \sqrt{30 - 13x - x^2}$$

4. Find the equation of the line that passes through (-1,4) and (2,7).

5. Find
$$(f \circ g)(x)$$
 if $f(x) = \frac{4x}{1+x^2}$ and $g(x) = \sqrt{3x}$

6. Find
$$(g \circ f)(x)$$
 if $f(x) = 2x + 3$ and $g(x) = \frac{1}{x}$.

7. Express
$$h(x) = \sqrt{x^2 - 16}$$
 as the composition of two functions such that $h(x) = (f \circ g)(x)$

8. Find
$$\sin \theta$$
 and $\cos \theta$ if $\cot \theta = 4$ and $0 \le \theta < \pi/2$

For each of the following, find the exact value:

9.
$$\cot\left(\arcsin\left(-\frac{1}{2}\right)\right)$$

10.
$$\sin\left(\arctan\left(-\frac{3}{5}\right)\right)$$

11.
$$\log_4 1024$$

12.
$$\log_5 \frac{1}{25}$$

13.
$$\sinh(\ln 3)$$

14. Solve for
$$x$$
 if $\log_a x + \log_a (x+4) = 0$

15. Consider the function
$$f(x)$$
 with graph below:

a. What is
$$\lim_{x\to 3} f(x)$$
?

b. Is
$$f(x)$$
 continuous at $x = 1$?

c. Is
$$f(x)$$
 continuous at $x = 3$?

Find the following limits:

16.
$$\lim_{x \to 2} \frac{3x + 5}{5x - 3}$$

17.
$$\lim_{x\to 0} \frac{\frac{1}{\sqrt{1+x}}-1}{x}$$

18.
$$\lim_{x \to 0} \frac{\sin 4x}{5x}$$

19.
$$\lim_{x \to 1} \frac{x^3 - x^2}{x - 1}$$

20.
$$\lim_{x\to 0} \frac{\sqrt{x+4}-2}{x}$$

Determine the intervals on which the function is continuous:

21.
$$f(x) = \frac{3x^2 - x - 2}{x - 1}$$

22.
$$f(x) = \begin{cases} 5 - x, & x \le 2 \\ 2x - 3 & x > 2 \end{cases}$$

Find the following limits:

23.
$$\lim_{x\to 0} \frac{\sin^2 x}{x}$$

24.
$$\lim_{x \to +\infty} \frac{\sqrt{3x^4 + x}}{x^2 - 8}$$

25.
$$\lim_{x \to +\infty} (\sqrt{x^2 - 5x} - x)$$

26.
$$\lim_{x \to +\infty} \frac{1}{x^2 - 8}$$

27. Show that $g(x) = \frac{x}{x+1}$ is equal to 0.599 for some value between 1 and 2.

28. Find the largest open interval, centered at x = -1 such that for all x in the interval the value of the function f(x) = 7x + 5 is within 0.01 of f(-1) = -2

29. Find the largest open interval, centered at x = -1 such that for all x in the interval the value of the function f(x) = 7x + 5 is within $\epsilon > 0$ of f(-1) = -2

Answers

1.
$$x \neq -\frac{10}{7}$$

2.
$$x \le -9 \text{ or } x > 1$$

3.
$$[-15, 2]$$

4.
$$y = x + 5$$

5.
$$(f \circ g)(x) = \frac{4\sqrt{3x}}{1+3x}$$

6.
$$g \circ f(x+h) = \frac{1}{2x+3}$$

7.
$$f(x) = \sqrt{x}$$
 and $g(x) = x^2 - 16$

8.
$$\sin \theta = \frac{1}{\sqrt{17}}$$
 and $\cos \theta = \frac{4}{\sqrt{17}}$

9.
$$-\sqrt{3}$$

10.
$$-\frac{3}{\sqrt{34}}$$

13.
$$\frac{4}{3}$$

14.
$$-2 + \sqrt{5}$$

16.
$$\frac{11}{7}$$

17.
$$-\frac{1}{2}$$

18.
$$\frac{4}{5}$$

20.
$$\frac{1}{4}$$

21.
$$(-\infty, 1) \cup (1, \infty)$$

22.
$$(-\infty, 2) \cup (2, \infty)$$

24.
$$\sqrt{3}$$

25.
$$-\frac{5}{2}$$

27. g(1) = .5, g(2) = .666 so by the I.V.T. there must be a *c* between 1 and 2 where g(x) = 0.599

28.
$$(-1 - \frac{0.01}{7}, -1 + \frac{0.01}{7})$$

29.
$$(-1-\frac{\epsilon}{7},-1+\frac{\epsilon}{7})$$