Math 121 Test 1

EF:	

September 16, 2014

1	
2	
3	
4	
5	
6	
Total	

Name		

Directions:

- 1. No books, notes or yik yakking about your SI. You may use a calculator to do routine arithmetic computations. You may *not* use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work, and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 6 problems.

1. (20 Points)

(a) Write |2x + 1| < 5 in the form a < x < b.

(b) Find the equation of the line with x-intercept x=4 and y intercept y=3.

(c) Find the domain of $f(x) = \frac{x + x^{-1}}{(x - 3)(x + 4)}$

(d) Find $\cos \theta$ and $\tan \theta$ if $\cot \theta = \frac{4}{3}$ and $\sin \theta < 0$.

2. (20 points)

(a) Let
$$f(x) = \sqrt{2-x^2}$$
 and $g(x) = \frac{1}{2-x}$, find i. $(f \circ g)(x)$

ii.
$$(g \circ f)(x)$$

(b) Find the exact value of $\cosh(3 \ln 2)$

(c) Solve for
$$x$$
: $\log_3 x + 3\log_3(x^2) = 14$

(d) Solve for
$$x: 7^{x+1} = (\frac{1}{7})^{2x}$$

3. (10 points) Below is the graph of f(x).

Find:

- (a) $\lim_{x \to 0^+} f(x)$
- (b) $\lim_{x \to 1} f(x)$
- (c) $\lim_{x \to 2^{-}} f(x)$
- (d) $\lim_{x \to 2^+} f(x)$
- (e) f(2)

4. (20 points)

(a)
$$\lim_{x \to -1} \frac{x^2 + 1}{(x^3 + 2)(x^4 + 1)}$$

(b)
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 + x - 6}$$

(c)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2 - 1} \right)$$

(d)
$$\lim_{h \to 5} \frac{h-5}{\sqrt{h+4}-3}$$

- 5. (20 points)
 - (a) Find the value of a and b so that f(x) is continuous if

$$f(x) = \begin{cases} ax+b & x < 1 \\ 4 & x = 1 \\ 2ax-b & x > 1 \end{cases}$$

(b)
$$\lim_{x \to 0^+} \sqrt{x} e^{\cos(\pi/x)}$$

(c)
$$\lim_{x \to -\infty} \frac{\sqrt{2x^2 + 3}}{3x - 6}$$

(d)
$$\lim_{x \to 0^+} \frac{\sqrt{1 - \cos x}}{x}$$

6. (10 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.

a) If
$$\lim_{x\to 3^-}f(x)=2$$
, and $\lim_{x\to 3^+}f(x)=2$ then
$$\lim_{x\to 3}f(x)=2.$$
 \mathbf{T}

b) If
$$\lim_{x\to 2^-} f(x)=3$$
, and $\lim_{x\to 2^+} f(x)=4$ then $f(2)$ must equal 3 or 4.

c)
$$\sin(\arctan x) = \frac{x}{\sqrt{1+x^2}}$$
. T F

d) If
$$f(1) = -2$$
 and $f(2) = 4$, then $f(c) = 0$ for some $1 \le c \le 2$.

e) If
$$f(x) = \frac{x+1}{x-1}$$
 then $f^{-1}(x) = \frac{x+1}{x-1}$.