Math 121 Test 1

EF:	

September 18, 2012

1	
2	
3	
4	
5	
6	
7	
Total	

TN T			
Name			

Directions:

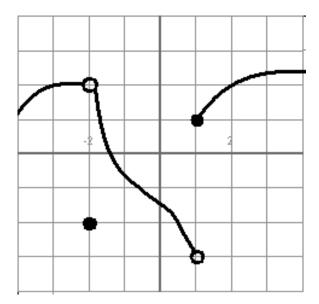
- 1. No books, notes or replacement referees. You may use a calculator to do routine arithmetic computations. You may *not* use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work, and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 7 problems.

- 1. (20 Points)
 - (a) Find the domain of $f(x) = \frac{\sqrt{4-x^2}}{x}$

(b) Find the slope, y-intercept, and x-intercept of the line with equation y=4-x

(c) Find $(f \circ g)(x)$ for $f(x) = \frac{1}{1+x^2}$ and $g(x) = \sin x$

(d) Find $\cos \theta$ if $\cot \theta = 4$ and $0 \le \theta < \pi/2$.


- 2. (20 points)
 - (a) Find the exact value of $\tan(\arccos\frac{2}{3})$

(b) Find the exact value of $\sinh(\ln 3)$

(c) Solve for x: $2 \log x - \log(x+1) = \log 4 - \log 3$

(d) Solve for x: $e^{x^2} = \frac{e^{4x}}{e^3}$

3. (10 points) Below is the graph of f(x).

Find:

- (a) $\lim_{x \to 1^+} f(x)$
- (b) $\lim_{x \to 1^-} f(x)$
- (c) $\lim_{x \to -2^+} f(x)$
- (d) $\lim_{x \to -2^-} f(x)$
- (e) $\lim_{x \to -2} f(x)$

4. (15 points)

(a)
$$\lim_{x\to 6} f(x) = 3$$
 and $\lim_{x\to 6} g(x) = 4$, find $\lim_{x\to 6} \frac{f(x)g(x) - 2}{3g(x) + 2}$.

(b)
$$\lim_{x \to -1} (3x^2 + 2x + 1)^5$$

(c)
$$\lim_{x \to 16} \frac{\sqrt{x} - 4}{x - 16}$$

- 5. (15 points)
 - (a) Find the value of a so that f(x) is continuous if

$$f(x) = \begin{cases} x^2 + a & x \le 0\\ \frac{\sin 2x}{x} & x > 0 \end{cases}$$

(b)
$$\lim_{x \to \pi/4} \frac{\sin x - \cos x}{1 - \tan x}$$

(c)
$$\lim_{x \to \infty} \left(\ln(2x+5) - \ln(\sqrt{x^2+7}) \right)$$

- 6. (10 points)
 - (a) Given f(x)=2x+3 and $\lim_{x\to 1}f(x)=5$, find a value of δ so that |f(x)-5|<0.01 whenever $0<|x-1|<\delta$

(b) Given f(x)=2x+3 and $\lim_{x\to 1}f(x)=5$, find a fomula for δ in terms of ϵ so that $|f(x)-5|<\epsilon$ whenever $0<|x-1|<\delta$

7. (10 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.

a) If
$$|f(x)|$$
 is continuous at $x = c$ then $f(x)$ is continuous at $x = c$.

b) If
$$\lim_{x\to c} f(x) = L$$
, then there is a δ such that if $0 < |x-c| < \delta$ then $|f(x)-L| < 0.001$

c) If
$$f(x) < g(x)$$
 for all $x \neq c$, then
$$\lim_{x \to c} f(x) < \lim_{x \to c} g(x)$$
 T

d) If
$$f(x) = g(x)$$
 for $x \neq c$ and $f(c) \neq g(c)$ then either $f(x)$ or $g(x)$ is not continuous at c .

e) If
$$f(1) = -2$$
 and $f(4) = 5$, then there is a c with $1 < c < 4$ where $f(c) = 0$