# Math 121 Test 1 

## September 17, 2013



| 1 |  |
| ---: | :--- |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| Total |  |

Name

## Directions:

1. No books, notes or asbestos. You may use a calculator to do routine arithmetic computations. You may not use your calculator to store notes or formulas. You may not share a calculator with anyone.
2. You should show your work, and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
5. This test has 7 problems.
6. (15 Points)
(a) Find the domain of $f(x)=\frac{\sqrt{2-x}}{\sqrt{4-x^{2}}}$
(b) Find $x$ such that $(x, 4)$ is on the line with slope $m=-3$ that goes through the point $(-2,13)$.
(c) Find $\sin \theta$ and $\tan \theta$ if $\csc \theta=2$ and $0<\theta<\pi / 2$.
7. (20 points)
(a) Which of the following is equal to $\sec (\arcsin x)$ ?
a) $\frac{1}{\sqrt{1+x^{2}}}$
b) $\frac{\sqrt{1-x^{2}}}{x}$
c) $\frac{x}{\sqrt{1-x^{2}}}$
d) $\frac{1}{\sqrt{1-x^{2}}}$
(b) Find $f^{-1}(x)$ for $f(x)=\frac{3 x+2}{5 x-1}$
(c) Solve for $x: e^{2 x}+e^{x}=12$
(d) Simplify $10 \log _{b}\left(b^{3}\right)-4 \log _{b}(\sqrt{b})$
8. (10 points) Below is the graph of $f(x)$.


Find:
(a) $\lim _{x \rightarrow a} f(x)$
(b) $\lim _{x \rightarrow b} f(x)$
(c) $\lim _{x \rightarrow c^{-}} f(x)$
(d) $\lim _{x \rightarrow d^{+}} f(x)$
(e) $f(b)$
4. (20 points)
(a) $\lim _{x \rightarrow 1} \frac{5-x^{2}}{4 x+7}$
(b) $\lim _{x \rightarrow 2} \frac{2^{2 x}+2^{x}-20}{2^{x}-4}$
(c) $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{x^{2}-6 x+9}}{x-3}$
(d) $\lim _{x \rightarrow 8} \frac{\sqrt{x+1}-3}{x-8}$
5. (15 points)
(a) Find the value of $a$ and $b$ so that $f(x)$ is continuous if

$$
f(x)=\left\{\begin{array}{lc}
x^{-1} & x<-1 \\
a x+b & -1 \leq x \leq \frac{1}{2} \\
x^{-1} & x>\frac{1}{2}
\end{array}\right.
$$

(b) $\lim _{x \rightarrow 0} \frac{(\sin 5 x)(\sin 4 x)}{(\sin 3 x)(\sin 2 x)}$
(c) $\lim _{x \rightarrow-\infty} \frac{4 x-3}{\sqrt{25 x^{2}+4 x}}$
6. (10 points) To show that $\lim _{x \rightarrow 5} x^{2}=25$
(a) Show that if $4<x<6$ then $\left|x^{2}-25\right|<11|x-5|$.
(b) Find $\delta$ such that if $0<|x-5|<\delta$ then $\left|x^{2}-25\right|<.001$
(c) Find $\delta$ such that if $0<|x-5|<\delta$ then $\left|x^{2}-25\right|<\epsilon$
7. (10 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.
a) If $f(x)$ is continuous at $x=c$ then $(f(x))^{2}$ is continuous at $x=c$.
b) If $\lim _{x \rightarrow c} f(x)=L$, then $\frac{\lim _{x \rightarrow c^{-}} f(x)}{\lim _{x \rightarrow c^{+}} f(x)}=1$
c) If $f(x) \neq g(x)$ for all $x \neq c$, then
c) $\quad \lim _{x \rightarrow c} f(x) \neq \lim _{x \rightarrow c} g(x)$

When using the bisection method to find where
d) $\quad f(x)=0$, if $f(1)=2$ and $f(2)=9$, then $f(x) \neq 0$ for all $1 \leq x \leq 2$
e) If $f(x)$ is a polynomial and $f(1)=-2$ and $f(4)=$

