Math 121 Test 1

EF:	

September 15, 2015

1
2
3
4
5
6
7
Total

TN T		
Name		

Directions:

- 1. No books, notes or Security Guards gone wild. You may use a calculator to do routine arithmetic computations. You may *not* use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 7 problems.

1. (15 Points)

(a) Find the domain of $f(x) = \frac{\sqrt{2-x}}{x^2-x}$

(b) Write |x-5| < 3 in the form a < x < b.

(c) Find $\tan \theta$ if $\sin \theta = \frac{a}{b}$

- 2. (20 points)
 - (a) Which of the following is equal to $\cot(\arccos x)$?

a)
$$\frac{1}{\sqrt{1+x^2}}$$

b)
$$\frac{\sqrt{1-x^2}}{x}$$

c)
$$\frac{x}{\sqrt{1-x^2}}$$

a)
$$\frac{1}{\sqrt{1+x^2}}$$
 b) $\frac{\sqrt{1-x^2}}{x}$ c) $\frac{x}{\sqrt{1-x^2}}$ d) $\frac{1}{\sqrt{1-x^2}}$

(b) Find
$$f^{-1}(x)$$
 for $f(x) = \frac{x+4}{7x-3}$

(c) Solve for
$$x$$
: $\ln x^4 - \ln x^2 = 2$

(d) Let
$$f(x) = \sqrt{x}$$
 and $g(x) = 1 - x$. Find:
i. $f \circ g$

ii.
$$g \circ f$$

3. (10 points) Below is the graph of f(x).

Find:

(a)
$$\lim_{x \to -1^+} f(x)$$

(b)
$$\lim_{x \to -1^-} f(x)$$

(c)
$$\lim_{x \to -1} f(x)$$

(d)
$$f(-1)$$

(e)
$$\lim_{x \to 3} f(x)$$

4. (20 points)

(a)
$$\lim_{x \to 1} \frac{x^3 - 1}{5x - 1}$$

(b)
$$\lim_{x \to 2} \frac{2^{2x} + 2^x - 20}{2^x - 4}$$

(c)
$$\lim_{x \to 4} \left(\frac{1}{\sqrt{x} - 2} - \frac{4}{x - 4} \right)$$

(d)
$$\lim_{x \to 5} \frac{x-5}{\sqrt{x+4}-3}$$

- 5. (15 points)
 - (a) Find the value of c so that f(x) is continuous if

$$f(x) = \begin{cases} x^2 - c & x < 5 \\ 4x + 2c & x \ge 5 \end{cases}$$

(b)
$$\lim_{x\to 0} \frac{(\sin 5x)(\sin 4x)}{(\sin 3x)(\sin 2x)}$$

(c)
$$\lim_{x \to \infty} (\ln(3x+1) - \ln(2x+1))$$

6. (10 points) Show that $\cos x = x$ has a solution in the interval [0,1]. (Hint: Show that $f(x) = x - \cos x$ has a zero in [0,1]).

7. (10 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.

a) If
$$\lim_{x\to c} f(x) = L$$
, then $f(c) = L$. T

b) If
$$\lim_{x \to c} f(x) = L$$
, then $\frac{\lim_{x \to c^{-}} f(x)}{\lim_{x \to c^{+}} f(x)} = 1$ **T F**

c) If
$$f(x)$$
 has a discontinuity as $x = c$, then
$$\lim_{x \to c^{-}} f(x)$$
 does not exist.

d) If
$$h(x) < f(x) < g(x)$$
 and $\lim_{x \to c} h(x) = \lim_{x \to c} g(x) = L$, then $\lim_{x \to c} f(x) = L$.

e) If
$$f(x)$$
 is a polynomial and $f(1) = -2$ and $f(4) = 5$, then there is a c with $1 < c < 4$ where $f(c) = 0$