Math 121 Test 1

EF:

September 15, 2015

1	
2	
3	
4	
5	
6	
7	
Total	

Name KEY

Directions:

- 1. No books, notes or Security Guards gone wild. You may use a calculator to do routine arithmetic computations. You may not use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 7 problems.

1. (15 Points)

(a) Find the domain of
$$f(x) = \frac{\sqrt{2-x}}{x^2-x}$$

$$(-\infty,0)$$
 $(0,1)$ $(1,2)$

(b) Write |x-5| < 3 in the form a < x < b.

$$-3 < 1 - 5 < 3$$

$$2 < x < 8$$

(c) Find $\tan \theta$ if $\sin \theta = \frac{a}{b}$

TANO =
$$\frac{\alpha}{(b^2-\alpha^2)^2}$$

(a) Which of the following is equal to
$$\cot(\arccos x)$$
?

a)
$$\frac{1}{\sqrt{1+x^2}}$$

b)
$$\frac{\sqrt{1-x^2}}{x}$$

a)
$$\frac{1}{\sqrt{1+x^2}}$$
 b) $\frac{\sqrt{1-x^2}}{x}$ c) $\frac{x}{\sqrt{1-x^2}}$ d) $\frac{1}{\sqrt{1-x^2}}$

$$d) \frac{1}{\sqrt{1-x^2}}$$

$$\Theta = ARCCOS \times COS\Theta = X$$
 \times
 \times

$$COTO = \frac{X}{\sqrt{1-x^2}}$$

(b) Find
$$f^{-1}(x)$$
 for $f(x) = \frac{x+4}{7x-3}$ $\times = \frac{7+4}{7x-3}$

$$X = \frac{7+4}{74-3}$$

$$7 \times y - 3 \times = y + 4$$

$$7xy-y=3x+4$$

$$y(7x-1) = 3x+4$$

$$f'(x) = \frac{3x+4}{7x-1}$$

(c) Solve for
$$x$$
: $\ln x^4 - \ln x^2 = 2$

$$\Omega_n x^2 = 2$$

$$\chi = e^2$$
 $\chi = \pm e$

(d) Let
$$f(x) = \sqrt{x}$$
 and $g(x) = 1 - x$. Find:

i.
$$f \circ g$$

ii.
$$g \circ f$$

$$Q(f(x)) = 1 - \sqrt{x}$$

3. (10 points) Below is the graph of f(x).

Find:

(a)
$$\lim_{x \to -1^+} f(x) = -$$

(b)
$$\lim_{x \to -1^{-}} f(x) = \frac{1}{2}$$

(c)
$$\lim_{x\to -1} f(x) = DNE$$

(d)
$$f(-1) = O$$

(e)
$$\lim_{x \to 3} f(x) = 3$$

(a)
$$\lim_{x \to 1} \frac{x^3 - 1}{5x - 1} = \frac{\bigcirc}{4} = \bigcirc$$

(b)
$$\lim_{x \to 2} \frac{2^{2x} + 2^x - 20}{2^x - 4} = \lim_{x \to 2} \frac{(2^x + 1)(2^x + 5)}{2^x + 4} = 0$$

(c)
$$\lim_{x \to 4} \left(\frac{1}{\sqrt{x} - 2} - \frac{4}{x - 4} \right)$$

$$=\lim_{X\to 4} \frac{\sqrt{X+2}}{X-4} - \frac{4}{X-4} - \lim_{X\to 4} \frac{\sqrt{X+2}}{(\sqrt{X+2})}$$

$$= \frac{1}{4}$$

(d)
$$\lim_{x \to 5} \frac{x-5}{\sqrt{x+4}-3}$$

$$= \lim_{X \to 5} \frac{X-5}{(x_{X+4}-3)(x_{X+4}+3)} = \lim_{X \to 5} \frac{(x-5)(x_{X+4}+3)}{x_{X+5}}$$

$$=$$
 G

5. (15 points)

(a) Find the value of c so that f(x) is continuous if

$$f(x) = \begin{cases} x^2 - c & x < 5 \\ 4x + 2c & x \ge 5 \end{cases}$$

$$f(5) = 20 + 2C \qquad \lim_{x \to 5} x^2 - C = 25 - C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

$$\lim_{x \to 5} x^2 - C = 20 + 2C$$

(b) $\lim_{x\to 0} \frac{(\sin 5x)(\sin 4x)}{(\sin 3x)(\sin 2x)}$

$$= \frac{9 \text{min}}{5 \times \frac{5 \text{IN} 5 \times \frac{3 \times}{5 \text{IN} 3 \times}}{5 \times 3 \times \frac{5 \text{IN} (4 \times)}{4 \times}} \frac{2 \times \frac{5 \times}{5 \times}}{\frac{2 \times}{3 \times}} \frac{5 \times \frac{4 \times}{3 \times}}{\frac{2 \times}{3 \times}}$$

$$= \frac{20}{6} = \frac{10}{3}$$

(c)
$$\lim_{x \to \infty} (\ln(3x+1) - \ln(2x+1))$$

$$= \lim_{X \to \infty} \ln \left(\frac{3X+1}{3X+1} \right)$$

$$\lim_{X \to \infty} \lim_{X \to \infty} \frac{3X+1}{3X+1} = \lim_{X \to \infty} \left(\frac{3}{2} \right)$$

6. (10 points) Show that $\cos x = x$ has a solution in the interval [0, 1]. (Hint: Show that $f(x) = x - \cos x$ has a zero in [0, 1]).

$$f(o) = -1$$

$$f(c) = 0$$
 For

7. (10 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.

a) If
$$\lim_{x\to c} f(x) = L$$
, then $f(c) = L$.

b) If
$$\lim_{x \to c} f(x) = L$$
, then $\frac{\lim_{x \to c^{-}} f(x)}{\lim_{x \to c^{+}} f(x)} = 1$ T

c) If
$$f(x)$$
 has a discontinuity as $x = c$, then
$$\lim_{x \to c^{-}} f(x)$$
 does not exist.

d) If
$$h(x) < f(x) < g(x)$$
 and $\lim_{x \to c} h(x) = \lim_{x \to c} g(x) =$
L, then $\lim_{x \to c} f(x) = L$.

e) If
$$f(x)$$
 is a polynomial and $f(1) = -2$ and $f(4) = 5$, then there is a c with $1 < c < 4$ where $f(c) = 0$