Math 121 Test	Matn	121	Test	1
---------------	------	-----	------	---

EF:	

September 20, 2022

Name		

1	
2	
3	
4	
5	
Total	

Directions:

- 1. No books, notes or teaching with shoes on. You may use a calculator to do routine arithmetic computations. You may *not* use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 5 problems.

1. (20 Points)

(a) If you write |3x - 5| < 2 in the form a < x < b, what are a and b?

(b) Find the domain of $f(x) = \frac{x + x^{-1}}{(x+2)(x-3)}$

(c) Find y so that (3, y) is on the line with slope m = 2 and goes through (1, 4).

(d) If $f(x) = 2^x$ and $g(x) = x^2$, find both $(f \circ g)(x)$ and $(g \circ f)(x)$.

2. (20 points)

(a) Solve for
$$x$$
, $e^3 e^{x^2} = e^{4x}$

(b) Find the inverse of the function
$$f(x) = \frac{x+3}{5x-3}$$

(c) If
$$\cot \theta = \frac{10}{3}$$
 and $0 \le \theta \le \frac{\pi}{2}$ find i. $\sin \theta$

ii.
$$\sec \theta$$

3. (20 points)

(a) Find
$$\lim_{x \to 1} \frac{5 - x^2}{4x + 7}$$

(b) Find
$$\lim_{x \to 1} (x - 1) \sin\left(\frac{\pi}{x^2 - 1}\right)$$
.

(c) Find
$$\lim_{x\to a} \frac{x^3 - ax^2 - x + a}{x - a}$$

(d) Find
$$\lim_{x\to 0} \frac{\sin 3x}{2x^2 + 5x}$$

4. (20 points)

(a)
$$\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right)$$

(b)
$$\lim_{h \to 0} \frac{\sqrt{a+2h} - \sqrt{a}}{h}$$

(c)
$$\lim_{x \to 7^{-}} \frac{|x-7|}{x-7}$$

(d)
$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + 7x} \right)$$

5. (20 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.

a) If
$$f(x) = \frac{|x+1|}{x+1}$$
 then $f(x) = 0$ for $-2 < x < 1$ **T F**

b) If
$$f(x)$$
 is continuous on $[0,2]$ and $f(0)=2$ and $f(2)=5$ Then $f(x)\neq 0$ on $(0,2)$.

c) If
$$f(c)$$
 is not defined, then $f(c)$ is not continuous at $x = c$

d) If
$$\lim_{\substack{x \to c \\ \text{uous at } x = c.}} f(x)$$
 does not exist, then $f(x)$ is not continuous $\mathbf{T} - \mathbf{F}$

e) If
$$f(x)$$
 and $g(x)$ are continuous everywhere, then
$$h(x) = \frac{f(x)}{g(x)}$$
 is continuous everywhere.

f) If
$$f(x) > g(x)$$
 for all $x \neq c$ then
$$\lim_{x \to c} f(x) > \lim_{x \to c} g(x)$$
 T

g) The function
$$f(x) = \frac{x+1}{x^2-x-2}$$
 is continuous at $x = -1$.

h) If
$$3x - 2 \le f(x) \le x^2$$
 for $0 \le x \le 3$ then
$$\mathbf{T} \quad \mathbf{F}$$

i) If
$$\lim_{x\to 5} f(x) = 2$$
, then there is a number $\delta > 0$ such that if $|x-5| < \delta$, then $|f(x)-2| < 0.001$

j)
$$1+1=2$$
 T F