Math	121	Test	1

EF:	

September 20, 2022

	KEY	
Name_	NEI	

1
2
3
4
5
Total

Directions:

- 1. No books, notes or teaching with shoes on. You may use a calculator to do routine arithmetic computations. You may *not* use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 5 problems.

- 1. (20 Points)
 - (a) If you write |3x 5| < 2 in the form a < x < b, what are a and b?

$$-2 < 3x - 5 < 2$$

 $3 < 3x < 7$
 $1 < x < \frac{7}{3}$

$$0 = \frac{3}{3}$$

$$0 = \frac{7}{3}$$

(b) Find the domain of $f(x) = \frac{x + x^{-1}}{(x+2)(x-3)}$

(c) Find y so that (3, y) is on the line with slope m = 2 and goes through (1, 4).

$$Y-4=2(x-1)$$

 $Y-4=2(3-1)$
 $Y-4=4$ $Y=8$

(d) If $f(x) = 2^x$ and $g(x) = x^2$, find both $(f \circ g)(x)$ and $(g \circ f)(x)$.

$$(f \circ g)(x) = f(g(x)) = f(x^2) = 2^{x^2}$$

 $(g \circ f)(x) = g(f(x)) = g(2^x) = (2^x)^2$
 $= 2^{3x}$

- 2. (20 points)
 - (a) Solve for x, $e^3 e^{x^2} = e^{4x}$

$$\chi^{2} + 3 = 4 \chi$$

 $\chi^{2} - 4 \chi + 3 = 0$
 $(\chi - 1)(\chi - 3) = 0$

(b) Find the inverse of the function $f(x) = \frac{x+3}{5x-3}$

$$y = \frac{x+3}{5x-3}$$

$$X = \frac{Y+3}{5Y-3}$$

$$y = \frac{x+3}{5x-3}$$
 $x = \frac{y+3}{5y-3}$ $(5y-3)(x) = y+3$

$$57x - 3x = 7+3$$
 $57x - 7 = 3x+3$
 $7(5x-1) = 3x+3$ $f(x) = \frac{3x+3}{5x-1}$

$$5 \frac{1}{x^{2}} = \frac{3x+3}{5x-1}$$

(c) If $\cot \theta = \frac{10}{3}$ and $0 \le \theta \le \frac{\pi}{2}$ find i. $\sin \theta$

$$SIN\Theta = \frac{3}{\sqrt{109}}$$

ii. $\sec \theta$

3. (20 points)

(a) Find
$$\lim_{x \to 1} \frac{5 - x^2}{4x + 7}$$
 =

(b) Find
$$\lim_{x \to 1} (x - 1) \sin \left(\frac{\pi}{x^2 - 1} \right)$$
.

$$-1 \le \sin \left(\frac{\pi}{x^2 - 1} \right) \le 1$$

$$-(x-1) \le (x-1) \le \ln \left(\frac{\pi}{x^2 - 1} \right) \le (x-1)$$

(c) Find
$$\lim_{x\to a} \frac{x^3 - ax^2 - x + a}{x - a}$$

$$= \lim_{x \to a} \frac{x^2(x-a) - (x-a)}{(x-a)}$$

$$=\lim_{x\to 0}\frac{(x-a)(x^2-1)}{(x-a)}=0^2-1$$

(d) Find
$$\lim_{x\to 0} \frac{\sin 3x}{2x^2 + 5x}$$

$$= \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \left(\frac{1 \cdot 3}{2x + 5}\right) = \frac{3}{5}$$

(a)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2 - 1} \right)$$

$$= \lim_{x \to 1} \frac{x+1-2}{(x-1)(x+1)} = \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)}$$
$$= \frac{1}{2}$$

(b)
$$\lim_{h\to 0} \frac{\sqrt{a+2h}-\sqrt{a}}{h}$$

$$= \lim_{h \to 0} \frac{a + 2h - a}{h (\sqrt{a+2h} + \sqrt{a})} = \frac{2}{2\sqrt{a}} = \frac{1}{\sqrt{a}} \text{ or } \frac{\sqrt{a}}{a}$$

(c)
$$\lim_{x \to 7^-} \frac{|x-7|}{x-7} = \lim_{x \to 7^-} \frac{|x-7|}{x-7} = -1$$

(d)
$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + 7x} \right) \left(\frac{\cancel{X} + \cancel{X^2 + 7} \cancel{X}}{\cancel{X} + \cancel{X^2 + 7} \cancel{X}} \right)$$

$$= \lim_{x \to 0} \frac{x^2 - (x^2 + 7x)}{x + \sqrt{x^2 + 7x}} = -\frac{7}{2}$$

5. (20 points) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.

a) If
$$f(x) = \frac{|x+1|}{x+1}$$
 then $f(x) = 0$ for $-2 < x < 1$ **T**

b) If
$$f(x)$$
 is continuous on $[0,2]$ and $f(0)=2$ and $f(2)=5$ Then $f(x)\neq 0$ on $(0,2)$.

c) If
$$f(c)$$
 is not defined, then $f(c)$ is not continuous at $x = c$

d) If
$$\lim_{\substack{x \to c \\ \text{uous at } x = c.}} f(x)$$
 does not exist, then $f(x)$ is not continuous at $x = c$.

e) If
$$f(x)$$
 and $g(x)$ are continuous everywhere, then $h(x) = \frac{f(x)}{g(x)}$ is continuous everywhere.

f) If
$$f(x) > g(x)$$
 for all $x \neq c$ then
$$\lim_{x \to c} f(x) > \lim_{x \to c} g(x)$$
 T

g) The function
$$f(x) = \frac{x+1}{x^2-x-2}$$
 is continuous at $x = -1$.

h) If
$$3x - 2 \le f(x) \le x^2$$
 for $0 \le x \le 3$ then
$$\lim_{x \to 2} f(x) = 4$$
 T

i) If
$$\lim_{x\to 5} f(x) = 2$$
, then there is a number $\delta > 0$ such that if $|x-5| < \delta$, then $|f(x)-2| < 0.001$

j)
$$1+1=2$$
 T F