Math	121	Test	1

EF:	

September 14, 2021

Name_	KEY	
mame_		

1	
2	
3	
4	
5	
Total	

Directions:

- 1. No books, notes or writing exams during Brown's games. You may use a calculator to do routine arithmetic computations. You may not use your calculator to store notes or formulas. You may not share a calculator with anyone.
- 2. You should show your work and explain how you arrived at your answers. A correct answer with no work shown (except on problems which are completely trivial) will receive no credit. If you are not sure whether you have written enough, please ask.
- 3. You may not make more than one attempt at a problem. If you make several attempts, you must indicate which one you want counted, or you will be penalized.
- 4. You may leave as soon as you are finished, but once you leave the exam, you may not make any changes to your exam.
- 5. This test has 5 problems.

- 1. (20 Points)
 - (a) If you write |2x-7| < 9 in the form a < x < b, what are a and b?

$$-9 < 3x - 7 < 9$$
 $-2 < 3x < 16$
 $0 = -1$
 $-1 < x < 8$
 $0 = 8$

(b) If f(x) has a domain of [2, 6] and range of [1, 5], what is the domain and range of f(x + 2) + 3?

- (c) What is the equation of the line perpendicular to 2x + 3y = 7 through (1,1)? $3y = -2x + 7 \qquad y = -\frac{2}{3} \times +\frac{2}{3}$ $y = -\frac{2}{3} \times +\frac{2$
 - (d) If $f(x) = x^2 + x$ and g(x) = 3x + 5, what is $(f \circ g \circ f)(1)$?

$$f(q(f(1))) = f(q(2)) =$$

 $f(11) = 121 + 11 = 132$

- 2. (20 points)
 - (a) Solve for x, $\ln(x) + \ln(x 1) = 0$

$$\lim_{X \to \infty} (x)(x-1) = 0 \qquad x(x-1) = e^{0} = 1$$

$$x^{2} - x - 1 = 0 \qquad x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$
Since x must be positive $x = \frac{1 + \sqrt{5}}{2}$

(b) Find the inverse of the function $f(x) = \frac{x}{2x+3}$

(c) What is $\tan(\arccos\frac{1}{6})$?

$$\Theta = ARccos(6)$$

$$Cos\theta = \frac{1}{6}$$

$$TRNB = \sqrt{35}$$

(d) What is $\sin(\arctan x)$?

(a)
$$\frac{1}{\sqrt{1-x^2}}$$
 (b) $\frac{1}{\sqrt{x^2-1}}$ (c) $-\frac{x}{\sqrt{x^2+1}}$ (d) $\frac{x}{\sqrt{1+x^2}}$

(e) None of these

$$\Theta = ARCTANX$$

TANO = X

SIN $\Theta = \frac{X}{1+x^2}$

(a) Find
$$\lim_{x\to 5} \frac{\sqrt{x+4}+1}{\sqrt{x-1}-1} = \frac{3+1}{3-1} = 4$$

(b) Find
$$\lim_{x\to 0} (x^3 + x) \cos\left(\frac{1}{x^3 + x}\right) = 0$$

$$-1 \le \cos\left(\frac{1}{x^3 + x}\right) \le 1$$

$$-(x^3 + x) \le (x^3 + x) \cos\left(\frac{1}{x^3 + x}\right) \le (x^3 + x)$$

$$0$$

(c) Find
$$\lim_{x\to 4} \frac{1-\frac{16}{x^2}}{1-\frac{4}{x}} \quad \frac{\mathbf{x^2}}{\mathbf{x^2}}$$

$$= \lim_{X \to 4} \frac{x^2 - 16}{x^2 - 4x} = \lim_{X \to 4} \frac{(x + 1)(x + 4)}{x(x + 4)}$$
$$= \frac{8}{4} = 2$$

(d) Find
$$\lim_{x\to 0} \frac{\sin^2 8x}{\tan^2 7x}$$

$$= \lim_{x\to 0} \frac{\sin 8x}{8x} \frac{\sin 8x}{8x} \frac{7x}{\sin 7x} \frac{7x}{\sin 7x} \frac{\cos^2 7x}{\sin 7x} \frac{64x}{\sin 7x}$$

$$=\frac{64}{49}$$

4. (20 points)

(a)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{3 - \sqrt{8 + x}}$$
 · $\sqrt{x + 1}$ $\frac{3 + \sqrt{8 + x}}{3 + \sqrt{8 + x}}$

$$= \lim_{x \to 1} \frac{(x-1)(3+\sqrt{8+x})}{(9-(8+x))(\sqrt{x+1})} = \lim_{x \to 1} \frac{(x-1)(3+\sqrt{8+x})}{(\sqrt{x}+1)}$$

$$= -\frac{6}{2} = -3$$

(b)
$$\lim_{x \to 1} \frac{3^{2x} - 7(3^x) + 12}{3^x - 3}$$

$$=\lim_{\chi \to 1} \frac{(3^{\chi}-3)(3^{\chi}-4)}{(3^{\chi}-3)} = 3-4 = -1$$

(c)
$$\lim_{x \to \infty} \frac{3x^3 - 3x + 23}{5x^4 - 5x^2 + 625x + 15}$$

(d)
$$\lim_{x \to -\infty} \frac{3x+2}{\sqrt{x^2+x+1}} = -3$$

POWER TOP AND BOTTOM 1

TOP NEGATIVE

BOTTOM POSITIVE

5. (20 points)

- (a) On the axis below, sketch a graph of a function that meets all the following criteria:
 - $\bullet \lim_{x \to 0^+} f(x) = 2$
 - $\bullet \lim_{x \to 0^-} f(x) = -2$
 - $\lim_{x\to 2} f(x) = \text{D.N.E.}$
 - $\bullet \lim_{x \to -\infty} f(x) = -4$
 - $\bullet \lim_{x \to +\infty} f(x) = 4$

- (b) Indicate whether the following statements are true or false by circling the appropriate letter. A statement which is sometimes true and sometimes false should be marked false.
 - a) If f(x) is continuous on [-1,1] and f(-1)=4 and f(1)=3 then there is a c where $f(c)=\pi$

T F

b) If $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} g(x) = 0$ then $\frac{\lim_{x\to 0} f(x)}{\lim_{x\to 0} g(x)}$ cannot exist.

T F

c) If $\lim_{x\to 1} f(x) = 3$, then there is a δ such that if $0<|x-1|<\delta$ then |f(x)-3|<2

T) F

d) If $\lim_{x \to \infty} \frac{\sin x}{x} = 1$

 Γ

e) If $f^{-1}(x)$ exists, and f(2) = 2 then $f^{-1}(2) = \frac{1}{2}$

 Γ