Math 122 Quiz 9 Review

Write out the first four non-zero terms for the Maclaurin series for:

1.
$$f(x) = \sin 2x$$

$$2. \ f(x) = x \sin x$$

3.
$$f(x) = xe^x$$

4.
$$f(x) = \frac{e^x}{1-x}$$

5.
$$f(x) = \ln(1+x^2)$$

- **6.** For the parametric curve: x = 4t + 6, y = 8t + 2, eliminate the parameter and express in rectangular form.
- 7. For the parametric curve: $x = 2 + 2\cos t$, $y = 3 + 4\sin t$, eliminate the parameter and express in rectangular form.
- 8. Find the equation of the tangent line to the curve $x=2t^2+2t,\,y=2t^2+4t$ at t=1.
- **9.** Find the equation of the tangent line to the curve $x = \sec t$, $y = \tan t$ at $t = \pi/4$.
- **10.** Find $\frac{d^2y}{dx^2}$ if $x = \sin t, y = 2\cos t$.
- **11.** Find the arc length of $x=4\sin 2t,\,y=4\cos 2t$, over the interval $0\leq t\leq \frac{\pi}{2}$.
- 12. Find the arc length of $x = t^2$, $y = t^3$, from (1,1) to (4,8).
- 13. Find the arc length of $x = a(t \sin t)$, $y = a(1 \cos t)$. for $0 \le t \le 2\pi$

Answers

1.
$$\sin 2x = 2x - \frac{8x^3}{3!} + \frac{32x^5}{5!} - \frac{128x^7}{7!} + \dots$$

2.
$$x \sin x = x^2 - \frac{x^4}{3!} + \frac{x^6}{5!} - \frac{x^8}{7!} + \dots$$

3.
$$xe^x = x + x^2 + \frac{x^3}{2} + \frac{x^4}{3!} + \dots$$

4.
$$\frac{e^x}{1-x} = 1 + 2x + \frac{5x^2}{2} + \frac{8x^3}{3} + \frac{65x^4}{24} + \dots$$

5.
$$\ln(1+x^2) = x^2 - \frac{x^4}{2} + \frac{x^6}{3} - \frac{x^8}{4} + \dots$$

6.
$$y = 2x - 10$$

7.
$$\frac{(x-2)^2}{4} + \frac{(y-3)^2}{16} = 1$$

8.
$$y = \frac{4}{3}x + \frac{2}{3}$$

9.
$$y = \sqrt{2}x - 1$$

10.
$$\frac{d^2y}{dx^2} = -2\sec^3 t$$

11.
$$4\pi$$

12.
$$\frac{1}{27}(80\sqrt{10} - 13\sqrt{13})$$