
What follows is Vladimir Voevodsky’s snapshot of his Fields Medal work on
motivic homotopy, plus a little philosophy and “from my point of view the main fun
of doing mathematics” Voevodsky (2002). Voevodsky uses extremely simple leading
ideas to extend topological methods of homotopy into number theory and abstract
algebra. The talk takes the simple ideas right up to the edge of some extremely
refined applications. The talk is on-line as streaming video at claymath.org/video/.

In a nutshell: classical homotopy studies a topological space M by looking at
maps to M from the unit interval on the real line:

[0, 1] = {x ∈ R | 0 ≤ x ≤ 1 }

as well as maps to M from the unit square [0, 1]×[0, 1], the unit cube [0, 1]3, and
so on. Algebraic geometry cannot copy these naively, even over the real numbers,
since of course the interval [0, 1] on the real line is not defined by a polynomial
equation. The only polynomial equal to 0 all over [0, 1] is the constant polynomial
0, thus equals 0 over the whole line. The problem is much worse when you look at
algebraic geometry over other fields than the real or complex numbers. Voevodsky
shows how category theory allows abstract definitions of the basic apparatus of
homotopy, where the category of topological spaces is replaced by any category
equipped with objects that share certain purely categorical properties with the
unit interval, unit square, and so on. For example, the line in algebraic geometry
(over any field) does not have “endpoints” in the usual way but it does come with
two naturally distinguished points: 0 and 1. Voevodsky’s approach will make this
work “like” the interval.

He makes any category with suitable objects define a homotopy theory. For
each case it remains that “how good this definition will be is a big question,”
and in fact “in most cases it is not going to work very well, but it will work
somehow” (Voevodsky, 2002, minutes 23, 26). It has worked very well in some
cases. For relatively accessible accounts of more see Voevodsky (1998) and Soulé
(2003).

An Intuitive Introduction to Motivic Homotopy Theory

Vladimir Voevodsky

I was given by Arthur sort of an impossible task. I was requested to explain (minute 2)
motivic homotopy theory so that it will be understood by non-mathematicians. So
what came out of that you will see now but I do not guarantee that it will be
understandable either by mathematicians or non-mathematicians.

At first there were spaces. Mathematicians studied spaces and starting with
simple examples of spaces. Some are shown in figure 1. First is one of the most
basic spaces, a point. There is another which is more basic but it is hard to draw—
because it is empty. Second is another standard space which I will talk about, the
unit interval on the real line, the line between 0 and 1. The third example in the (minute 3)
figure is a surface, a space of dimension 2, which is supposed to look like some
baked good with two holes in it. The last example is more mathematical. It is the
space GLn(C) of all n × n complex matrices of non-zero c determinant. That is a
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sophisticated space which, depending on how you count, has dimension either n2

or 2n2.

(1) •

(2) • •
0 1

(3)

(4) GLn(C)
the space of n× n complex number matrices with non-zero determinant

Figure 1. Some Spaces

There are many different axiomatizations of the notion of a space in mathematics.
For instance there are topological spaces, there are metric spaces. In the end it does(minute 4)
not matter as long as one only considers non-pathological examples it all comes to
the same thing. So I will assume there is some intuitive understanding of what
space is.

Any space, if you formalize it by really writing down a definition will be a tremen-
dously infinite object so it is very difficult to work with. So to distinguish spaces
mathematically we use what we call invariants which are something more under-
standable and typically more finite than the space itself. There are two invariants
I will dare to call the most fundamental. One is the dimension of the space. The(minute 5)
point has dimension 0, and the interval has dimension 1.

dim(•) = 0

dim(• •) = 1

Figure 2. Dimension

Another invariant is the number of pieces the space consists of. The point consists
of one piece. You cannot divide it into disconnected pieces. And here is sort of a
deformed circle with a deformed interval sitting inside it, so there are two pieces,
two disjoint pieces, namely the circle and the interval. Typically when one thinks
of a space one thinks of a space with only one piece. But that is just a custom.

What is homotopy theory about, what does it study? First let us say π0 of a(minute 6)
space is the set of its pieces. So if a space has two pieces then π0 is a set of two
elements, namely the pieces. So it is typically more finite than the space itself.
Homotopy theory studies some fancy versions of this invariant which are called
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• has one piece

has two pieces

Figure 3. The number of “pieces”

higher homotopy sets πn. I will try to explain how one gets from π0 to these πn
where πn is a set for every non-negative integer n.

It can be done in different ways. I choose to base my explanation on the notion
of continuous map which will also play a fundamental role later on. What is a (minute 7)
continuous map? I have spaces M and N and a map f :M→N is any rule which
assigns to each point of M a point of N . And the idea is that f is continuous if
whenever points are close in M they do not get too far apart in N . The easiest
way to understand it is to look at examples.

So let C(M,N) denote the set of all continuous maps from M to N and see some
examples. Look at continuous maps C(pt,N) from a point to any space N . A map
from a point to a space is just determined by where this unique point goes. So a (minute 8)
map from a point to a space N is the same as a point of N . So the set of maps
C(pt,N) from a point to N is just the set of points of N .

C(pt,N) = set of points of N

Another example is the set of maps C(N, pt) from any space N to a point. There
is only one place for all the points of N to go, namely the sole point of the target
space, so there is always only one map from any space to the point.

C(N, pt) always has just one element

Here is a fancier example. Let us look at maps from the unit interval to any space
N where you may think of N as a surface outlined in Figure 4.

C([0, 1], N)

Any map γ : [0, 1]→N will have some beginning point γ(0) where the point 0 goes,
and some end point γ(1) where the point 1 goes, and there will be all the points
along this path where the numbers between 0 and 1 go. (minute 9)

A continuous map γ : [0, 1]→N

N
•

•γ

Figure 4. An example of a path γ in C([0, 1], N)
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The fact that it is a continuous map means that this path has no breaks in it.
That is what it means intuitively. So the set C([0, 1], N) of all continuous maps
from the interval to any space N is just the set of paths in N .

Let us go back to the notion of the number of pieces of a space. How can we say
formally when two points lie in the same piece? If they lie in the same piece then
they can be connected by a path. If they lie in different pieces there is no way to
find a path without breaks which connects one with the other. So to define formally
what it means to say two points lie in the same piece one can use this notion of a
path, of a continuous map from the interval to the space. Let me repeat that: The(minute 10)
only thing which one needs to know to define the set π0 of N , the set of pieces of
N , is to know the points and the paths between these points.

Now I move to the next homotopy set, π1, which is a little bit fancier and harder
to explain. As I said, π0 is the first of an infinite series of homotopy sets. For π0

one takes points and identifies any two that can be connected by a path. For π1(minute 11)
suppose I fix two points, p and q, which lie in the same piece. Then I consider

•p • q N

Figure 5. Two points in one piece of a space N

paths that connect p to q. Let us look at all the paths. So we get some space of

•p • q N

γ1

Figure 6. A path γ1 connecting p to q

paths whatever that means. Let us try to understand how many pieces this space
of paths has, and call this set of pieces the π1 of the space relative to p and q.

In practice what one has to do is consider continuous maps from the square to the
space, and let us say I request maps which contract the left hand side completely
to point p and the right hand side completely to point q. Then the image of the
top side will be a path from p to q, call that γ1. And the image of the bottom side
will also be a path from p to q, call that γ2. And as I move from the top side to the(minute 12)
bottom side continuously I can think of that as being a “path between the paths.”
It is a continuous deformation between the top path and the bottom path.
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•p • q N

γ1

• q

γ2

→

Figure 7. A map of the square into N which contracts the two
vertical sides to the points p and q, takes the top side of the square
to the path γ1, and takes the bottom side to the path γ2

Now I can consider the set of pieces π1 of the space of paths, where two paths
are declared to belong to the same piece if they can be connected by such a map
from the square. This procedure can be repeated and I can use cubes to connect
maps from squares, and so on. One gets a sequence of sets πn which are called the
homotopy sets of the space.

There is one nice example which I want to give. If we try to define these homotopy (minute 13)
sets for the space GLn(C) of complex matrices with non-zero determinant it is of
course a very complicated problem to compute such a weird thing for such a weird
space. However it turns out it can be done at least for very very big matrices, that
is matrices of size n × n where n is very large, and the answer turns out to be
wonderfully simple. The first homotopy set is the point, any two matrices can be
connected by a path. There is only one piece in the whole space of matrices. If I (minute 14)
consider paths then it runs out that the pieces in the space of paths are number by
the integers, so π1 can be identified with the set of integers. It turns out π2 is again
just one point and π3 is again the set of integers, and so on for a very long time.
How long depends on the number n but basically if n is infinity then it goes on
forever. That is the Bott periodicity theorem. That was one of the very impressive (minute 15)
achievements of mathematics in, maybe the early 1960s or late 1950s. That was
one of the first really big computations of homotopy theory.

π0(GLn(C), 1, 1) = a point
π1(GLn(C), 1, 1) = set of integers
π2(GLn(C), 1, 1) = a point
π3(GLn(C), 1, 1) = set of integers

...

Figure 8. Homotopy sets of GLn(C)

That is what I wanted to say about homotopy theory of spaces. It studies spaces.
It associates to them these homotopy sets which come from studying paths of paths
and so on. And here is an example of a computation. These are actually things that
can be calculated in some nontrivial cases. Now I want to jump to do something
similar in the algebraic setting.
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There is only one known way to do it. I don’t know how much I will have time
to say today. But there is one topic which I want to talk about very quietly and(minute 16)
without hurry. That is something which I never saw even mentioned in any popular
book about mathematics. I saw algebraic equations mentioned, I saw probably even
homotopy groups mentioned—especially in elementary books on topology. But I
think that at the heart of 20th century mathematics lies one particular notion and
that is the notion of a category. So let me try to explain what it is about. It is a
very formal gadget and I will illustrate it by an example.

Here are two examples of categories. First I have a picture of one category.(minute 17)

A,B,C — objects

x, y, z, t — morphisms

xz = t — composition rules

yz = t
•

•

•
A

B

C

x

22

y

GG

z

		

t

55

Figure 9. First example of a category

There are three objects A,B,C and there are arrows between those objects which
are called morphisms and then there is the rule which says that if I have one arrow
and it is followed by another arrow, then there is a third arrow. Let’s say I have an
arrow from A to B and an arrow from B to C then there is a rule to get from such a
pair an arrow from A to C. That is called a composition rule. But let’s forget this
third part for a second. It is not necessarily important for intuitive understanding.
The main thing that exists in categories is that there are objects and there are
morphisms. There is a formal set, in this case {A,B,C}, which is called the set of
objects. For every pair of objects there is another formal set, in this case it is(minute 18)

• {x, y} between A and B
• {z} between B and C
• {t} between A and C

which are called morphisms between these objects.
The first example is an example of a combinatorial, finite category. Here is a

second example. The objects are spaces, all the spaces that exist. Morphisms
between two spaces are continuous maps between those spaces. And of course
continuous maps can be composed. So that gives an example of a category of a
very different kind.

Spaces are objects
Continuous maps are morphisms
Obvious composition.

Figure 10. Second example of a category
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What was somewhat amazing for me, personally, an amazing discovery, was that
for almost all—let us say for very many—classes of mathematical objects there are
natural categories which correspond to them. So for most classes of mathematical
objects we can construct a category whose objects will be these objects, morphisms
will be some natural way of connecting one object to another, and there will be
some kind of composition. (minute 19)

Here is a more formal way to say what a category X is. There is a set of objects
and for any pair of objects there is a set of morphism between those objects and
then there is a composition rule.

• a set of objects of X
• for any pair of objects N and M a set of morphisms from N to M

Mor(N,M)

• a rule giving for each morphismN→f M and morphismM→g K the composite
N→fg

K

Figure 11. To specify a category X

What I hope to do now is show how this works, and why it is interesting. Let (minute 20)
us for instance consider the category of topological spaces. And let us choose a
space N . What can we say about this space looking at it exclusively as being an
object of the category of spaces? So I do not want to look inside this space, I know
nothing about its inside. I only know continuous maps relating this space to all
other spaces. Instead of looking at the structure of the object you look at its sort
of “social relationships!”

As a very first example, can we figure out when a space is a point? There is a (minute 21)
nice answer: A space N is a point if and only if for every other space there is a
single morphism to N . That characterizes a point exclusively by morphisms to and

N = pt ⇔ for each M, Mor(M,N) has exactly one element

Figure 12. When is N a point?

from it.
Let us ask a more complicated question. When is a space N connected? When

does it consist of only one piece? Or more generally, can we somehow express let us
say the first homotopy set, the set of pieces, purely in categorical terms? It turns
out yes we can. So let us try to play this game.

First of all we know the set of points of the space N . It is the set of morphisms
from the point to this space. We have already characterized the point in an internal (minute 22)
way. Now let us consider the unit interval [0, 1]. The set of morphisms from the
unit interval to the space is the set of paths. I need to know the beginning and
the end of a path. For that I need the notion of composition of morphisms. If I
have a path, I have two distinguished points 0 and 1 on the unit interval, which are
morphisms from the point to the unit interval. If I look at the composition of my
path with one of these points I get a point of the space which is the beginning or
the end of the path.
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• Mor(pt,N) — the set of points of N

Consider two points pt
a // [0, 1] and pt

b // [0, 1] .
• [0, 1] has distinguished points

pt
0 // [0, 1] and pt

1 // [0, 1]
• Mor([0, 1], N) — the set of paths of N

• for [0, 1]
γ // N

γ(0) — beginning point
γ(1) — end point.

• Points a, b lie in the same “piece” of N if there is a path γ
with a = γ(0) and b = γ(1).

Figure 13. How to compute π0(N) in categorical terms

So using purely the structure of the category I know the set of points, I know
the set of paths, and I know how to assign the beginning and end of the path. So(minute 23)
now I can say what the set of pieces is because I simply have to identify any two
points which can be connected by a path, in other words for which there is a path
with them as beginning and end. And that gives me the set π0.

The only thing here which is not internal to the categorical structure is the unit
interval itself. We do not know how to characterize it from the inside. But as soon
as I have a category and some object in it which I want to call the unit interval
with two maps 0 and 1 called beginning and end, I can define some kind of π0. How
good this definition will be is a big question.

Similarly, if I want to compute the next homotopy set (here I will not go into(minute 24)
much detail) I need to know the object pt called point, the object [1, 0] called unit
interval, and I need some distinguished object which I might write I2 which is called
the square and some finite number of morphisms connecting these objects. For the
square I need four maps [0, 1]→ I2 which I call the sides of the square. As soon
as I have such a purely combinatorial structure inside my category I can consider
morphisms with values in any object and get something which I will call π0 and
π1. I can continue that and model formally in any category each of the πn. But
basically for what I am talking about it is enough to understand π0, and the rest
is not too elementary.(minute 25)

So one can formalize the situation where one has point, interval, square, cube,
cube of the next dimension, and so on. All of those things in the usual topological
world map to each other. There are two distinguished maps from the point to the
interval – the beginning and the end. There are four maps from the interval to the
square corresponding to the four sides of the square. There are six maps from the
square to the cube corresponding to the six sides of the cubes. And so on. These
satisfy some relations.

So I can formally say let us take any category whatsoever, let us take a series
of objects and morphisms between them satisfying appropriate conditions. Let
us call such a gadget a cubical object. As soon as I have a cubical object in any
category I can play the game which I explained for π0 and π1 and define some kind
of homotopy sets for any object in this category. Of course it needs to be said that(minute 26)
in most cases this is not going to work very well. But it will work somehow.
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Given any category and a cubical object in it we can define analogs of the homotopy
sets πn for all objects of the category.

Figure 14. Observation

Of course the πn are just an example. In principle there are many more struc-
tures, let us say in topological spaces, which are needed for homotopy theory. One (minute 27)
can translate most of these structures into categorical terms, as I tried to show in
this example of cubical spaces. As soon as they are translated into these formal
categorical terms one can try to take some very different category and apply it
there and see what happens.

Motivic homotopy theory happens when one applies this procedure to the fol-
lowing category of systems of algebraic equations. This is not exactly the standard
approach to algebraic geometry but it is the most elementary one I could think of.

Let us consider the following objects which we call systems of algebraic equations.
By definition a system of algebraic equations is the following gadget: first, a list
of letters which I call variables of the system, and second a list of polynomials in
the variables which I call equations of the system. So here is an example. There (minute 28)
is one variable x, and one equation x2 + 1. Here is another example. There are n
variables x1 . . . xn and there are no equations whatsoever. This is a very important
system denoted by An.

A system of algebraic equations consists of:
• A list of letters called variables

x1, . . . , xn
• A list of polynomials in these variables

f1, . . . , fm called equations.
• One example: (x;x2 + 1)
• Another example is (x1, . . . , xn; ) with no equations. This is called An.
• A more sophisticated example

(x11, x12, . . . , xnn, t; Det(xij) · t− 1).
This system is called GLn.

Figure 15. Systems of algebraic equations

Here is a more sophisticated example. It has n2 variables xij thought of as
entries in a matrix, plus one additional variable t, and one equation

Det(xij) · t− 1

which in effect says the determinant cannot be 0, since multiplying it by t gives
1. But actually it does not say anything, it is just my polynomial. This system of
equations is denoted GLn. (minute 29)

Now I want to define the category of systems of algebraic equations. As objects
I sort of want to take all systems of algebraic equations but that is a bit too many.
So a typical approach is first to choose what kind of coefficients we will consider.
So let us take some system of coefficients, say integers or real numbers or complex
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numbers, and consider all systems with coefficients in these numbers. That will be (minute 30)
the class of objects of our category. Now I need morphisms from one system to
another. I want a morphism to be a change of variables. A morphism from one
system in variables x to another system in variables y is going to be some way of
expressing variables y in terms of variables x in such a way that the equations sort
of are satisfied on both sides. There is an obvious way to compose these things. I
will not explain this in detail. It was not I who invented this. I do not know who
invented it. But I read it in a wonderful textbook by Manin on algebraic geometry
published in the Soviet Union at the end of the 1960s.(minute 31)

Here is an example. Let us consider A0. Remember A0 is the system of no
equations and no variables. So a morphism from A0 to another system would mean
finding an expression of the variables of that second system, in term of in terms of
no variables whatsoever from A0. It means I have to find constants of the second
system which satisfy the equations of the second system. Such a morphism is
exactly a solution of the second system of equations. similarly one can verify that
every system of equations has exactly one morphism to A0.(minute 32)

For any algebraic system of equations X:
• Mor(X,A0) has exactly one element.
• Mor(A0, X) = the set of solutions to X.

Figure 16. Morphisms to and from A0

It turns out that these objects An, which are the systems of algebraic equations
with no equations, form a cubical object in a very naive sense. One can easily build
maps between them, in the category of systems of algebraic equations, correspond-
ing to all the maps between usual cubes in spaces.

I can use these cubical objects to define some kind of homotopy sets for any
system of algebraic equations. In general the results will not be quite correct. That
is, the results will not correspond to anything important. But there is an important
example. If I apply it to the system GLn I get very very reasonable things. I get
sets which are called algebraic K-groups of the system of coefficients.(minute 33)

πm(GLN ) = Kalg
m+1(k)

These groups have been defined in many difficult ways over the last maybe 40 years
and they are still the source of a great many interesting mathematical problems
and insights. The result really depends on k. So for the integers it will have to
do with number theory and arithmetic. For the complex numbers or real numbers
there are connections with special functions such as polylogarithms and hyperbolic
geometry and I don’t know what else. So these are very very interesting groups and
give an example of how such a game can lead to objects of independent interest.(minute 34)

Now let me have the last slide and get a little philosophical. So that is how I see
the whole picture.

We start with geometry, the category of topological spaces. We invent something
about this geometrical world using our basically visual intuition. The notion of
pieces comes exclusively from visual intuition. We somehow abstract it and re-write
it in terms of category theory which provides this connecting language. And then
we apply in a new situation, in this case in the situation of algebraic equations which
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GEOMETRY

A construction from homotopy theory, e.g. πn

��
Categorical formulation e.g. through cubical objects

��
Specialization to the category of algebraic equations

ALGEBRA

Figure 17. The whole picture

is purely algebraic. So what we get is some fantastic way to translate geometric
intuition into results about algebraic objects. And that is from my point of view
the main fun of doing mathematics. Thank you.
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